HOME 首頁(yè)
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運(yùn)營(yíng)
CASE 服務(wù)案例
NEWS 熱點(diǎn)資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    暖通空調(diào)論文3000字(暖通空調(diào)論文3000字范文)

    發(fā)布時(shí)間:2023-04-25 02:59:50     稿源: 創(chuàng)意嶺    閱讀: 1260        

    大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于暖通空調(diào)論文3000字的問題,以下是小編對(duì)此問題的歸納整理,讓我們一起來看看吧。

    創(chuàng)意嶺作為行業(yè)內(nèi)優(yōu)秀企業(yè),服務(wù)客戶遍布全國(guó),相關(guān)業(yè)務(wù)請(qǐng)撥打175-8598-2043,或微信:1454722008

    本文目錄:

    暖通空調(diào)論文3000字(暖通空調(diào)論文3000字范文)

    一、關(guān)于暖通空調(diào)設(shè)計(jì)的一些思考

    1. 一個(gè)軟件的安裝一定要打開試用一下,沒問題才是安裝成功。

    2. 標(biāo)準(zhǔn)、條文上的黑體粗字是必須執(zhí)行的。

    3. 冷凍水:供實(shí)、虛回

    4. 畫出來的圖要能用

    5. 坡度:供、回靠水泵送上去

    6. 自動(dòng)放氣閥:位于給水管最高點(diǎn),一般放在廚房、衛(wèi)生間,因?yàn)槭卿X板容易拆。安裝高度注意看圖上標(biāo)高

    7.注意檢查口

    8. 廚房、衛(wèi)生間吊的頂比石膏板低

    9. 回水管:高      供水管:低

    10. 預(yù)留套管位置是暖通與結(jié)構(gòu)碰后的結(jié)果

    11. 對(duì)水管的位置沒有明確的規(guī)范要求,但要跟土木碰一碰,確保結(jié)構(gòu)的沒問題

    12. 冷凝水管從梁下走,從地漏排走

    13. 穿梁的預(yù)埋套管一般不可以離的太近,一般為200的間距,太近的話中間穿不了鋼筋,結(jié)構(gòu)的穩(wěn)固性不好

    14. 空調(diào)不能對(duì)著頭吹

    15. 管路少穿墻

    16. 吊頂美觀也很重要

    17. 冷凝水坡度一般都是0.003(千分之三),也可以是0.005

    18. 畫的圖一定要清晰地表達(dá)意思意圖

    19. 圖紙說明:空調(diào)設(shè)計(jì)包括:依據(jù)、概況、參數(shù)(室內(nèi)、室外、維護(hù)結(jié)構(gòu))、冷熱負(fù)荷、空調(diào)設(shè)計(jì)系統(tǒng)(空調(diào)、自控)、環(huán)保

    (1)施工說明

    (2)圖例

    (3)所用標(biāo)準(zhǔn)圖集

    (4)主要設(shè)備材料表

    (5)圖紙目錄

    20. 可以通過看水系統(tǒng)圖來研究系統(tǒng)結(jié)構(gòu)

    21. 要保持足夠的勁頭、手速(畫圖就要快速畫好,不要慢吞吞)

    22. 看管間距方法:[管徑/2+保溫層厚度(查規(guī)范)]*2

    23. 畫圖時(shí)可以看看3維版,有更直觀印象(畫圖時(shí)腦內(nèi)要裝換成真正的實(shí)物,這樣根據(jù)實(shí)際去考慮規(guī)范規(guī)定的事)

    24. 管路能穿剪力墻就不要穿梁

    25. 風(fēng)量按換氣次數(shù)計(jì)算,若為雙層地下車庫(kù)則要按每輛車的量算

    26. 熱力入口在地下室

    27. 大樣圖上閥門、保溫層厚度在圖集上有

    28. 平面圖上的閥門可以自由縮放、斜著放,表達(dá)出這個(gè)就行了(不能太小了,太小圖上看不見)

    29. 常用風(fēng)盤制冷量:

    FP-8:4.5KW

    FP-6.3:3.5KW

    FP-5:2.8KW

    FP-3.5:2.0KW

    制冷量計(jì)算時(shí),把這層或這個(gè)系統(tǒng)的每個(gè)風(fēng)盤制冷量代數(shù)相加,再乘以同時(shí)使用系數(shù)0.65,即可以的得到這層活這個(gè)系統(tǒng)的制冷量。

    經(jīng)驗(yàn)上一般小區(qū)不會(huì)同時(shí)開所有的空調(diào),所以不用按空調(diào)制冷量算,一般取140W/m2已經(jīng)很大了。按小區(qū)來取得話算50W/m2.

    30. 標(biāo)了標(biāo)注的就是必須實(shí)際照做的

    沒有標(biāo)注的是平面圖,是概念圖(按照那個(gè)擺,但具體位置不是)

    31. 只接一條線的時(shí)候,比摩阻要控制在250以內(nèi),控制比摩阻是為了減小沿程損失。

    正常比摩阻在100-300范圍內(nèi),這是一個(gè)可能出現(xiàn)的范圍,所有比摩阻值必須控制在250以下

    32. 水系統(tǒng)布置:

    (1) 布置原則(閥門種類,什么時(shí)候安)

    (2) 水系統(tǒng)的承壓能力

    規(guī)范上有一般系統(tǒng)的承壓能力,從而考慮是否需要豎向分區(qū)

    (3) 水力計(jì)算

    算水管水流量

    算水管管徑

    水系統(tǒng)的沿程損失計(jì)算

    水系統(tǒng)的管段局部損失

    33. 系統(tǒng)工作壓力=靜壓+動(dòng)壓

    承壓能力講的是設(shè)備承壓

    34. 鴻業(yè)軟件上的“分支計(jì)算”必須是斷線,且有頭有尾可以計(jì)算,所以一般重新畫一個(gè)專門用于計(jì)算的立管系統(tǒng)

    35. 梁圖上穿梁的部分才要加套管

    36. 畫完圖的最后要檢查一下有沒有問題

    37. 穿梁圖上考慮入戶地暖管走地下室

    38. 畫圖要心中有成算,手上看起來慢其實(shí)快。動(dòng)手改起來要完全改完再該別的

    39. 別人講的都是暫時(shí)這樣或者經(jīng)驗(yàn)這樣,要以規(guī)范和圖集為準(zhǔn)

    40. 有時(shí)候不是對(duì)于錯(cuò),只是個(gè)人的習(xí)慣問題

    41. 標(biāo)注只要表達(dá)清楚了就可以,沒有規(guī)定一定在哪個(gè)方向。

    42. 標(biāo)注時(shí)考慮大小、位置、高度

    43. 冷凝水的高度和位置一般不表示,因?yàn)樘?xì),一般畫出圖即可,位置施工時(shí)會(huì)自己協(xié)商

    44. 套管的具體位置按預(yù)埋套管圖上的位置。

    45. 即使有大樣,平面圖上閥門也要畫全,實(shí)在畫不下,注上詳見大樣

    46. 一層會(huì)有指北針,是建筑圖上給的

    47. 水管水力計(jì)算:

    (1) 根據(jù)選型風(fēng)盤的功率,在乘上同時(shí)使用系數(shù)即得負(fù)荷值

    (2) 在旁邊地方畫一個(gè)風(fēng)盤,cx修改風(fēng)盤的參數(shù)(可以一層風(fēng)盤的負(fù)荷值都用這一個(gè)風(fēng)盤負(fù)荷值來代替)

    (3) 畫一個(gè)給水,一條排水管,選自動(dòng)設(shè)備連管

    (4) 選 水管——分支計(jì)算,點(diǎn)最下方管出“初算”結(jié)果

    (5) 讓比摩阻降下來,按流速計(jì)算,改部分管徑值(尤其是最末端管,放大些)

    (6) 點(diǎn)重新計(jì)算,沒什么問題就標(biāo)注

    48. 回頭再檢查一遍:想想工人拿到我的圖怎樣理解每個(gè)位置

    想想我是不是都表達(dá)清楚了

    隨便取一小塊,看看我知不知道這能不能安裝在別的位置

    49. 只有自動(dòng)排氣閥的立管 DN20

    冷凝水管 de25 (de32)  i=0.003

    地漏de25

    平面圖上自動(dòng)排氣閥在給水管上  DN15(戶內(nèi))

    末端截止閥  DN25

    泄水閥(管)DN50  (熱力入口)

    排污閥  DN50 (熱力入口)

    旁通閥 DN80

    熱力入口自動(dòng)排氣閥DN20

    50. 每個(gè)FP 都要一個(gè)電動(dòng)二通閥

    熱能表、自力式壓差控制閥每戶一個(gè)

    51. 立管高度低于60m一般不用補(bǔ)償

    延長(zhǎng)量=t*l*線性伸縮系數(shù)

    線性伸縮系數(shù)取0.012

    如果不作補(bǔ)償,熱脹冷縮,立管太長(zhǎng),容易把水表扯下來或是漏水

    一般把延長(zhǎng)量控制在2cm以下

    施工溫差在3℃左右

    33(3m層高*11層)*55*0.012=21.78=2cm

    52. 波紋補(bǔ)償器可以放在樓層面上方,便于檢修

    53. 算負(fù)荷:

    (1) 用負(fù)荷工具條中房間管理算出每個(gè)房間、外墻、窗大小,記下來

    (2) 負(fù)荷計(jì)算中創(chuàng)建,該氣象參數(shù),一定要選在“新規(guī)范《GB50736-2012》氣象參數(shù)”上

    (3) 改維護(hù)材料結(jié)構(gòu)(看節(jié)能書最下面匯總的K值,注意區(qū)分冬夏季,冬天的可以和節(jié)能書上不一致,夏天的一定要和節(jié)能書上的一致)

    (4) 25#——樓層屬性——選關(guān)聯(lián)層、關(guān)鍵層、相同層

    (5) 改完一定要按刷新數(shù)據(jù)(注意設(shè)層高)

    (6) 每個(gè)房間改名稱(體現(xiàn)功能)

    相同房間要匯總,該房間面積,設(shè)備燈光不改(隨意),人員取0.03人/m2,新風(fēng)量取換氣次數(shù)*h(即為單位面積新風(fēng))

    54. 寫在圖紙材料表上的外墻、窗等材料取主要部分

    55. 管線走線時(shí)注意頂板高、翻管等問題(還要有一定的預(yù)留空間)

    56. 窗戶LC2418指寬24 高18

    57. Kv就是算出來的流量

    Kvs流量系數(shù),指閥門兩端壓差為0.1MPa,水密度為1g/cm2,閥門全開時(shí)的流量是調(diào)節(jié)閥的重要參數(shù),反映調(diào)節(jié)閥的容量

    58. 風(fēng)機(jī)盤管水流量:根據(jù)風(fēng)盤標(biāo)稱的供冷量除1.163再除5得出來標(biāo)準(zhǔn)水流量

    59. CAD去水印的方法:

    法一:導(dǎo)成pdf的cad。首先另存為dxf格式,再打開這個(gè)dxf格式的文件,點(diǎn)擊打印——打印機(jī)(cad to pdf)——打印樣式(monochrome.ctb)——圖紙尺寸(若是加長(zhǎng)版,在 特性 中自定義圖紙尺寸)——打印范圍(窗口)——居中打印——預(yù)覽

    法二:亂刀小軟件。命令ap——最上方的框內(nèi)選擇BladeR18-x64.arx 文件——點(diǎn)擊加載

    ——加載成功以后再打印,就沒有印戳了

    二、建筑設(shè)計(jì)的本科生畢業(yè)論文

    隨著社會(huì)經(jīng)濟(jì)的不斷發(fā)展,人們的生活水平也有了很大的提高,對(duì)于住房條件的要求也越來越高,為了滿足居民的住房需求,我國(guó)的建筑業(yè)加大了房屋建筑設(shè)計(jì)的規(guī)模和力度。下文是我為大家搜集整理的建筑設(shè)計(jì)的本科生畢業(yè)論文的內(nèi)容,歡迎大家閱讀參考!

    建筑設(shè)計(jì)的本科生畢業(yè)論文篇1

    淺談建筑設(shè)計(jì)中節(jié)能建筑設(shè)計(jì)

    摘要:當(dāng)今社會(huì)經(jīng)濟(jì)飛速發(fā)展,做為我國(guó)國(guó)民經(jīng)濟(jì)三大支柱產(chǎn)業(yè)之一的建筑業(yè),在能源消耗中占的比重越來越大,在當(dāng)下大力倡導(dǎo)節(jié)能環(huán)保的大環(huán)境下,節(jié)能建筑做為共同關(guān)注的重要問題被提上日程。本文闡述了建筑設(shè)計(jì)中節(jié)能設(shè)計(jì)的概念、現(xiàn)狀和優(yōu)勢(shì),并提出了節(jié)能建筑設(shè)計(jì)中的幾點(diǎn)策略,充分利用自然能,降低不可再生能源消耗,促進(jìn)我國(guó)建筑可持續(xù)發(fā)展。

    關(guān)鍵詞:節(jié)能建筑;設(shè)計(jì);應(yīng)用

    隨著我國(guó)經(jīng)濟(jì)快速增長(zhǎng),各項(xiàng)建設(shè)取得巨大成就的同時(shí),我國(guó)也付出了巨大的資源和環(huán)境被破壞的代價(jià),經(jīng)濟(jì)發(fā)展與資源環(huán)境被破壞的矛盾日趨尖銳,群眾對(duì)環(huán)境污染問題反應(yīng)強(qiáng)烈,能源的短缺已不容忽視,節(jié)約能源與環(huán)境保護(hù)已受到世界性的普遍關(guān)注,在我國(guó)亦不例外。目前,全世界有近30%的能源消耗在建筑物上,長(zhǎng)此以往,將嚴(yán)重影響世界經(jīng)濟(jì)的可持續(xù)發(fā)展。因此,我們必須從可持續(xù)發(fā)展的戰(zhàn)略出發(fā),使建筑盡可能少地消耗不可再生資源,降低對(duì)外界環(huán)境的污染及破壞,并為使用者提供健康、舒適與自然和諧的工作及生活空間。

    1節(jié)能建筑概念

    節(jié)能建筑是指遵循氣候設(shè)計(jì)和節(jié)能的基本方法,對(duì)建筑規(guī)劃分區(qū)、群體和單體、建筑朝向、間距、太陽(yáng)輻射、風(fēng)向以及外部空間環(huán)境進(jìn)行研究后,設(shè)計(jì)出的低能耗建筑,其主要指標(biāo)有:建筑規(guī)劃和平面布局要有利于自然通風(fēng),綠化率不低于35%;建筑間距應(yīng)保證每戶至少有一個(gè)居住空間在大寒日能獲得滿窗日照2小時(shí)等。目前節(jié)能建筑已逐漸成為國(guó)際建筑界的主流趨勢(shì)。一個(gè)經(jīng)常被忽略的事實(shí)是:建筑在能源消耗總量中,幾乎占到了70%,這一比例遠(yuǎn)遠(yuǎn)高于運(yùn)輸和工業(yè)領(lǐng)域。在發(fā)展低碳經(jīng)濟(jì)的道路上,建筑的“節(jié)能”和“低碳”注定成為繞不開的話題。

    2 節(jié)能建筑設(shè)計(jì)的現(xiàn)狀和優(yōu)勢(shì)

    2.1節(jié)能建筑研究及應(yīng)用現(xiàn)狀

    節(jié)能建筑已逐漸成為國(guó)際建筑界的主流趨勢(shì)。在中國(guó),節(jié)能建筑思想也越來越受到重視,并已寫進(jìn)國(guó)家的發(fā)展規(guī)劃中。目前對(duì)于節(jié)能建筑研究較多的是建筑外窗、玻璃幕墻的應(yīng)用,而對(duì)外墻、屋頂以及樓地板的研究較為欠缺。另外,夏熱冬冷地區(qū)的研究較寒冷地區(qū)、嚴(yán)寒地區(qū)的研究多,主要是因?yàn)橄臒岫涞貐^(qū)采暖和空調(diào)能耗均較高,節(jié)能設(shè)計(jì)需同時(shí)考慮圍護(hù)結(jié)構(gòu)的保溫和隔熱性能,而這兩者是相互矛盾的,所以,要想達(dá)到既保溫又隔熱的目的,有很多困難需要解決。

    2.2低碳節(jié)能建筑的優(yōu)勢(shì)分析

    2.2.1采用地毯式的建筑能使能耗顯著降低。據(jù)統(tǒng)計(jì),建筑在建造和使用過程中可消耗50%的能源,并產(chǎn)生34%的環(huán)境污染物。節(jié)能建筑則大大減少了能耗,和既有建筑相比,它的耗能可降低70%~80%。所以低碳式建筑更有利于環(huán)境的保護(hù)。

    2.2.2節(jié)能建筑產(chǎn)生出新的建筑美學(xué)。一般的建筑采用的是商品化的生產(chǎn)技術(shù),建造過程的標(biāo)準(zhǔn)化、產(chǎn)業(yè)化,造成了大江南北建筑風(fēng)貌大同小異、千城一面,而節(jié)能建筑強(qiáng)調(diào)的是突出本地的文化、本地的原材料,尊重本地的自然、本地的氣候條件,這樣在風(fēng)格上完全是本地化的,并由此產(chǎn)生了新的建筑美學(xué)。節(jié)能建筑向大自然的索取最小,這樣的建筑,讓人在體驗(yàn)新建筑美感的同時(shí),能更好地享受健康舒適的生活。

    2.2.3節(jié)能建筑環(huán)保理念貫穿始終。傳統(tǒng)建筑多是在建造過程或使用過程中,考慮到環(huán)境問題,而節(jié)能建筑強(qiáng)調(diào)的是從原材料的開采、加工、運(yùn)輸、使用,直至建筑物的廢棄、拆除的全過程,節(jié)能、環(huán)保理念貫徹始終,強(qiáng)調(diào)建筑要對(duì)全人類、對(duì)地球負(fù)責(zé)。

    3 推進(jìn)節(jié)能建筑的措施

    3.1 建筑規(guī)劃的節(jié)能設(shè)計(jì)

    3.1.1 合理選址

    建筑選址主要是根據(jù)當(dāng)?shù)氐臍夂?、地質(zhì)、水質(zhì)、地形及周圍環(huán)境條件等因素的綜合狀況來確定。建筑設(shè)計(jì)中,既要使建筑在其整個(gè)生命周期中保持適宜的微氣候環(huán)境,為建筑節(jié)能創(chuàng)造條件,同時(shí)又要不破壞整體生態(tài)環(huán)境的平衡。

    3.1.2 正確選擇朝向

    日照及朝向選擇的原則是冬季能獲得足夠的日照并避開主導(dǎo)風(fēng)向,夏季能利用自然通風(fēng)并防止太陽(yáng)輻射。然而建筑的朝向、方位以及建筑總平面的設(shè)計(jì)應(yīng)考慮多方面的因素,建筑受到社會(huì)歷史文化、地形、城市規(guī)劃、道路、環(huán)境等條件的制約,要想使建筑物的朝向均滿足夏季防熱和冬季保溫是困難的,因此,只能權(quán)衡各個(gè)因素之間的得失,找到一個(gè)平衡點(diǎn),選擇出這一地區(qū)建筑的最佳朝向和較好朝向,盡量避免東西向日曬。

    3.2 建筑圍護(hù)結(jié)構(gòu)節(jié)能設(shè)計(jì)

    建筑圍護(hù)結(jié)構(gòu)組成部分(屋頂、外墻、門和窗、遮陽(yáng)等設(shè)施)的設(shè)計(jì)對(duì)建筑能耗與用戶所處熱舒適環(huán)境有根本的影響。一般增大圍護(hù)結(jié)構(gòu)的費(fèi)用僅為總投資的 3%~6%,而節(jié)能卻可達(dá) 20%~40%。通過改善建筑物圍護(hù)結(jié)構(gòu)的熱工性能,在夏季可減少室外熱量傳入室內(nèi),在冬季可減少室內(nèi)熱量的流失,使建筑熱環(huán)境得以改善,從而減少建筑冷、熱消耗。

    3.2.1 屋頂節(jié)能

    屋頂是住宅第五立面,對(duì)建筑造型起著重要作用。住宅做斜坡頂屋面,可借助屋面坡度與日照斜率相接近的特點(diǎn),可再降低住宅頂層的層高。在維持平屋面住宅日照間距的條件下,既取得了改變建筑輪廓、有效地解決了屋面防水和擴(kuò)大屋頂部位使用空間的效果;也減少了住宅之間的日照間距,節(jié)約了建設(shè)用地。平屋頂可采用北向的退臺(tái),既獲得露天活動(dòng)空間,也可縮小日照間距。

    3.2.2 墻體節(jié)能

    墻體是建筑外圍護(hù)結(jié)構(gòu)的主體,其功能主要是承重、防水、防潮、隔熱、保溫。其所用材料的保溫性能直接影響建筑的耗熱量,一般情況下,單一墻體材料往往難以同時(shí)滿足保溫、隔熱要求,因而在節(jié)能的前提下,應(yīng)進(jìn)一步推廣空心磚墻及其復(fù)合墻體技術(shù)。其一般做法是,用磚或鋼筋混凝土作承重墻,并與絕熱材料復(fù)合。

    3.3 建筑材料節(jié)能設(shè)計(jì)

    合理選用建筑節(jié)能材料也是全面建筑節(jié)能的一個(gè)重要方面。建筑材料的選擇應(yīng)遵循健康、高效、經(jīng)濟(jì)、節(jié)能的原則。一方面,隨著科技的發(fā)展,大量的新型高效材料不斷被研制并應(yīng)用到建筑設(shè)計(jì)中去,更好地起到節(jié)能效果。另一方面,要結(jié)合當(dāng)?shù)氐膶?shí)際情況,發(fā)掘出一些地方節(jié)能材料,更好地應(yīng)用到建筑節(jié)能中去。 3.4 利用新能源

    可再生能源在暖通空調(diào)系統(tǒng)中的應(yīng)用包括:太陽(yáng)能的應(yīng)用、自然通風(fēng)的應(yīng)用、地下水的應(yīng)用、地?zé)?冷)的應(yīng)用等。

    3.4.1 太陽(yáng)能的應(yīng)用地球攔截的太陽(yáng)能輻射相當(dāng)于目前全球電力消費(fèi)量的1500倍,而在現(xiàn)有技術(shù)、經(jīng)濟(jì)條件下可供開發(fā)利用的太陽(yáng)能,只占理論資源量的很小一部分。太陽(yáng)能在暖通空調(diào)中的應(yīng)用主要有太陽(yáng)能采暖和太陽(yáng)能制冷兩個(gè)方面。

    ①太陽(yáng)能采暖

    太陽(yáng)能采暖用電作為輔助能源,驅(qū)動(dòng)用太陽(yáng)能加熱的水在管道中循環(huán)流動(dòng)向房間供熱。

    ②太陽(yáng)能制冷

    太陽(yáng)能制冷主要包括太陽(yáng)能壓縮式制冷、太陽(yáng)能吸收式制冷和太陽(yáng)能吸附式制冷。太陽(yáng)能壓縮式制冷研究的重點(diǎn)是如何將太陽(yáng)能有效地轉(zhuǎn)換成電能,再用電能去驅(qū)動(dòng)壓縮式制冷系統(tǒng)。太陽(yáng)能吸附式制冷是將系統(tǒng)中的加熱器和冷卻器去掉,將太陽(yáng)能集熱器與吸附床合二為一,冷卻功能則利用夜間室外空氣的自然冷卻來完成。

    3.4.2 自然風(fēng)的應(yīng)用

    自然風(fēng)的供冷是可再生能源在暖通空調(diào)應(yīng)用中的重要組成部分。當(dāng)室外空氣的焓值和溫度低于室內(nèi)時(shí),在供冷期內(nèi)就可以利用室外風(fēng)所帶有的自然冷量來全部或部分滿足室內(nèi)冷負(fù)荷的需要。通常,這種情況出現(xiàn)在供冷期的過渡季和夜間,可采用的方法為新風(fēng)直接供冷和夜間通風(fēng)蓄冷。由于利用了自然風(fēng)提供建筑所需要的冷量,與常規(guī)空調(diào)系統(tǒng)相比,在運(yùn)行中不用電或少用電,既節(jié)約能源,又減少對(duì)環(huán)境的污染,同時(shí)也改善了室內(nèi)空氣品質(zhì)。

    3.4.3 地下水的應(yīng)用

    地下水由于地層的隔熱作用,其溫度受氣溫影響很小。在暖通空調(diào)中,有些地下水可以直接作為冷源,更是熱泵良好的低位熱源。所以水源熱泵有著良好的節(jié)能前景。

    4 結(jié)束語(yǔ)

    保護(hù)環(huán)境、有效利用自然能源、削減能源負(fù)荷是新時(shí)期實(shí)現(xiàn)可持續(xù)發(fā)展的重要要求之一,建筑設(shè)計(jì)中應(yīng)用節(jié)能技術(shù)是對(duì)可持續(xù)發(fā)展這一理念的最好回應(yīng),節(jié)能建筑將成為今后建筑設(shè)計(jì)的主打方向,建筑節(jié)能工程作為建設(shè)領(lǐng)域的新方向已成為我們既定的基本國(guó)策,我們應(yīng)深刻認(rèn)識(shí)到節(jié)能設(shè)計(jì)的重要性,從自身出發(fā)、從實(shí)際出發(fā),設(shè)計(jì)出與實(shí)際生活和社會(huì)相適應(yīng)的設(shè)計(jì),努力使建筑能耗最低化,大力發(fā)展節(jié)能建筑,提高能源利用率,為加快建設(shè)資源節(jié)約型,環(huán)境友好型社會(huì)做貢獻(xiàn)。

    參考文獻(xiàn):

    [1]劉加平,武六元. 建筑節(jié)能與建筑設(shè)計(jì)中的新能源利用[J]能源工程,2001

    [2]周煒.小議建筑節(jié)能設(shè)計(jì)[J]陜西建筑,2008

    建筑設(shè)計(jì)的本科生畢業(yè)論文篇2

    淺析建筑設(shè)計(jì)與城市設(shè)計(jì)

    摘要:城市是歷史發(fā)展的產(chǎn)物,是集人類文明與傳統(tǒng)于一身的聚集體,其結(jié)構(gòu)龐大復(fù)雜,內(nèi)容包羅萬象,建筑是城市的重要組成部分,本文淺析其二者設(shè)計(jì)之間的相互關(guān)系。

    關(guān)鍵詞:城市;建筑;設(shè)計(jì)

    城市是人們的家,如何讓自己的家變得更美好,人們希望創(chuàng)造一種住著舒適、用著方便、看著美觀的充滿生機(jī)的獨(dú)特的城市空間。對(duì)現(xiàn)狀的無奈與對(duì)未來美好的渴望給人們提供了思考研究與創(chuàng)造的機(jī)會(huì)。建筑師、規(guī)劃師和景觀師紛紛研究各種理論與設(shè)計(jì)方法,以期能為城市添彩,創(chuàng)造更為舒適、更為人性化的城市空間。

    一、 城市設(shè)計(jì)與城市規(guī)劃

    談起城市設(shè)計(jì)與城市規(guī)劃的關(guān)系,首先引用著名建筑師沙里寧在《論城市》一書中對(duì)城市設(shè)計(jì)的含義歸納:“城市設(shè)計(jì)是三維空間,而城市規(guī)劃是二維空間,兩者都是為居民創(chuàng)造一個(gè)良好的有秩序的生活環(huán)境。”

    城市規(guī)劃以一個(gè)城市的宏觀發(fā)展為目標(biāo),它更多的考慮城市的工業(yè)化,商業(yè)化,現(xiàn)代化,要飛速發(fā)展,要為經(jīng)濟(jì)服務(wù),提高城市運(yùn)作的效率,所以要求有更高,更快,更先進(jìn),更現(xiàn)代化,更信息化的“硬”環(huán)境;而“城市設(shè)計(jì)”理念的出現(xiàn),則是“人本主義”對(duì)高速工業(yè)化的反叛,它更應(yīng)該注重人文的,文化的,美學(xué)的,自然的“軟”環(huán)境。

    但是兩者也有共通性,城市設(shè)計(jì)既為城市規(guī)劃提供思路和形象化的發(fā)展目標(biāo),也為建筑設(shè)計(jì)提供前提和輪廓,城市設(shè)計(jì)具有更多的立體性、可操作性和示意性,其主體就是空間環(huán)境設(shè)計(jì)。無論是建筑群的組合還是城市的空間設(shè)計(jì),都有一種內(nèi)在的秩序或結(jié)構(gòu)作為聯(lián)系的紐帶。城市設(shè)計(jì)由注重城市的肌理、構(gòu)圖注重人的存在與活動(dòng),越來越體現(xiàn)出對(duì)主體城市的認(rèn)識(shí)。從城市發(fā)展史中可以看到,人的主觀活動(dòng)往往起決定作用,在現(xiàn)代城市規(guī)劃與設(shè)計(jì)過程中設(shè)計(jì)結(jié)果與規(guī)劃結(jié)果并不一定完全吻合,所以它們之間需要相互反饋、相互調(diào)整。

    二、 城市設(shè)計(jì)與建筑設(shè)計(jì)

    建筑是組成城市的基本細(xì)胞,精制而富有特色的建筑最能展示城市的藝術(shù)性。建筑的設(shè)計(jì)手法現(xiàn)在基本有3 種:模仿、再生、創(chuàng)新。功能成為建筑設(shè)計(jì)的主題,形式只是外皮的建筑創(chuàng)作過程正在被建筑師們推敲。越來越多的跡象表明,許多建筑師正在研究建筑的基本組成元素,然后在某種法則的指導(dǎo)下,進(jìn)行建筑的重組,從而展現(xiàn)嶄新的建筑形式。建筑的外皮也成為單獨(dú)研究的一個(gè)課題,其保溫、承重、生態(tài)、維護(hù)等諸多功能被分層研究,再進(jìn)行組合,形成有獨(dú)特內(nèi)涵的外皮或立面形式。這種解構(gòu)主義的創(chuàng)作手法更立意于建筑的本原,創(chuàng)造出理性而非感性的建筑。這種建筑形式先思而后建,比施工圖設(shè)計(jì)的建筑形式更利于城市整體的藝術(shù)環(huán)境。

    城市設(shè)計(jì)是一門正逐步完善和發(fā)展的綜合性學(xué)科,是一門在實(shí)踐中安排城市發(fā)展規(guī)劃與建筑設(shè)計(jì)、景觀設(shè)計(jì)相對(duì)關(guān)聯(lián)的實(shí)用性學(xué)科,它具有相對(duì)獨(dú)立的基本原理和方法,它主要解決的是城市的面和線問題。建筑設(shè)計(jì)是在城市規(guī)劃的前提下,根據(jù)建設(shè)任務(wù)要求和工程技術(shù)條件進(jìn)行全面設(shè)想,并根據(jù)其功能具體確定建筑物的空間組合形式和詳細(xì)尺寸,構(gòu)造及材料做法。它也具有相對(duì)獨(dú)立的基本原理和方法,主要解決的是城市的點(diǎn)和面問題。同時(shí)城市設(shè)計(jì)主要是通過建筑設(shè)計(jì)、景觀設(shè)計(jì)來實(shí)現(xiàn)的。城市設(shè)計(jì)的內(nèi)容也能夠細(xì)微到桌椅、燈具甚至標(biāo)志物,但與建筑設(shè)計(jì)仍有質(zhì)的區(qū)別。城市設(shè)計(jì)對(duì)城市是從整體形象把握,即使具體到任何細(xì)小局部時(shí),設(shè)計(jì)師依然將每個(gè)細(xì)部作為城市空間體系中的一個(gè)部分進(jìn)行設(shè)計(jì),而建筑設(shè)計(jì)只是關(guān)心在特定空間的某一建筑,卻很少關(guān)心它的鄰居,缺乏對(duì)城市空間的總體認(rèn)識(shí)和把握。

    在城市設(shè)計(jì)中不但要注重城市的功能分區(qū),交通流線,而且還要注重建筑物的體量、尺度、比例、色彩、造型、材料、空間等。必須強(qiáng)調(diào)“城市設(shè)計(jì)最基本的特征是將不同的物體(包括建筑物)進(jìn)行聯(lián)合,使之成為一個(gè)有機(jī)整體,設(shè)計(jì)者不僅必須考慮物體本身的設(shè)計(jì),而且還要考慮一個(gè)物體與其他物體之間的關(guān)系”。這就要協(xié)調(diào)好二者之間的關(guān)系,城市設(shè)計(jì)以城市和建筑群體空間環(huán)境作為主要對(duì)象,而一個(gè)好的城市設(shè)計(jì)則在于整體環(huán)境的和諧、優(yōu)美,不僅僅是單純的建筑單體設(shè)計(jì)。沙里寧在《論城市》中提出城市體形環(huán)境設(shè)計(jì)的三條原則,其中第二條就是“相互協(xié)調(diào)的原則”。西特在《城市建設(shè)藝術(shù)》一書中總結(jié)中世紀(jì)歐洲城市建設(shè)藝術(shù)中強(qiáng)調(diào)的“互協(xié)調(diào)要素”,并加以發(fā)展,指出自然界雖然千變?nèi)f化,但又是相互協(xié)調(diào)的,因此,人類建設(shè)新城也應(yīng)該遵守這條原則。在沙里寧的實(shí)踐中,把建筑設(shè)計(jì)、戶外空間以及園林綠化等融為一體,形成一個(gè)完整和諧的整體。

    而我們的城市,最缺的就是關(guān)系,建筑與環(huán)境之間沒有關(guān)系,建筑物與建筑物之間沒有關(guān)系。單獨(dú)看,有些還不錯(cuò),放在一起就是亂七八糟。我認(rèn)為這不是單純建筑的問題,而是城市設(shè)計(jì)與建筑設(shè)計(jì)相協(xié)調(diào)的問題。

    三、 結(jié)語(yǔ)

    中國(guó)的許多城市有上千年的歷史,積淀著濃厚的歷史文化底蘊(yùn)。然而現(xiàn)今的體制使許多建筑師成為克隆的高手,現(xiàn)代的城市建設(shè)已經(jīng)讓人們辨別不出南北方的差異,內(nèi)陸與沿海的不同,千年的文化被百年的新城整合成一個(gè)模板。河北省許多地區(qū)的三級(jí)甲等醫(yī)院門診樓都是按同一份圖紙蓋出來的,只不過城市不同而已。KPF 的高科技與細(xì)膩,拉爾夫的樓梯間遍布大江南北,漂亮是漂亮,但缺少了味道。建筑本來是一種展現(xiàn)個(gè)性魅力的藝術(shù)創(chuàng)作,但現(xiàn)在成了表現(xiàn)城市共性的主要元素。

    城市是一個(gè)國(guó)家精神文明與物質(zhì)文明的縮影。在經(jīng)濟(jì)全球化大潮中,一個(gè)國(guó)家能否在激烈的國(guó)際競(jìng)爭(zhēng)中取得優(yōu)勢(shì),關(guān)鍵在于這個(gè)國(guó)家的大城市是否具有競(jìng)爭(zhēng)實(shí)力??v觀當(dāng)今世界,競(jìng)爭(zhēng)不僅是經(jīng)濟(jì)力量的競(jìng)爭(zhēng),更是文化精神的競(jìng)爭(zhēng)。一個(gè)新興的經(jīng)濟(jì)型城市,如無文化底蘊(yùn),至多是一架經(jīng)濟(jì)機(jī)器,發(fā)展動(dòng)力顯然不足。國(guó)際上的大都市,巴黎、倫敦、紐約等,之所以能百多年經(jīng)久不衰,就在于它們都有著深厚的文化積淀,又不斷地與時(shí)俱進(jìn)地提高自己的文化品位,引領(lǐng)時(shí)代新潮流。因此,我們應(yīng)該吸收其精華、去其糟粕,切實(shí)處理好三者之間的關(guān)系,以找回我們遺失在快速城市化浪潮里的文明。

    猜你喜歡:

    1. 大學(xué)建筑畢業(yè)設(shè)計(jì)論文

    2. 建筑設(shè)計(jì)畢業(yè)論文范文

    3. 畢業(yè)論文建筑工程設(shè)計(jì)

    4. 建筑設(shè)計(jì)畢業(yè)論文范文精選

    5. 建筑工程畢業(yè)論文范文

    三、建筑設(shè)備論文3000字

    寫作思路:根據(jù)題目要求,以建筑設(shè)備作為主題,詳細(xì)記錄哪些必要的設(shè)備,最后進(jìn)行總結(jié)。正文:

    1、建筑設(shè)備工程施工技術(shù)

    為了讓建筑設(shè)備工程更好運(yùn)行和發(fā)揮作用,首先就應(yīng)該把握施工技術(shù)要點(diǎn),做好設(shè)備安裝。但在日常工作中,一些施工人員的技術(shù)水平較低,責(zé)任心不強(qiáng),導(dǎo)致設(shè)備安裝存在問題與不足,制約建筑設(shè)備工程更好運(yùn)行和發(fā)展作用。今后應(yīng)該轉(zhuǎn)變這種情況,把握施工技術(shù)要點(diǎn),促進(jìn)建筑設(shè)備工程質(zhì)量提高,也為建筑工程施工效率提高創(chuàng)造便利。

    1.1施工準(zhǔn)備工作。為促進(jìn)設(shè)備安裝順利完成,首先應(yīng)該做好準(zhǔn)備工作,建筑設(shè)備采購(gòu)之前,采購(gòu)員應(yīng)該嚴(yán)格按照?qǐng)D紙要求進(jìn)行,對(duì)永久性使用的設(shè)備,嚴(yán)格按照規(guī)定制定采購(gòu)計(jì)劃,報(bào)相關(guān)部門審批,然后按照要求采購(gòu)。

    收貨時(shí)按照要求對(duì)設(shè)備進(jìn)行驗(yàn)收,檢查設(shè)備是否滿足施工規(guī)范要求,材料是否合格,零配件是否滿足要求,采購(gòu)的設(shè)備是否存在問題,具備合格證和質(zhì)量保證書。如果是成套大型設(shè)備,更應(yīng)該做好設(shè)備驗(yàn)收工作,在有監(jiān)理工程師和業(yè)主在場(chǎng)的情況下,經(jīng)檢查無誤之后進(jìn)行驗(yàn)收,確保設(shè)備質(zhì)量,為接下來進(jìn)行安裝和設(shè)備運(yùn)行創(chuàng)造良好條件。

    1.2設(shè)備安裝技術(shù)。安裝時(shí)要把握每個(gè)技術(shù)要點(diǎn),保證安裝施工質(zhì)量提高。重視對(duì)設(shè)備的位置度、嚴(yán)密性和強(qiáng)度進(jìn)行嚴(yán)格控制,最好進(jìn)行設(shè)備耐壓試驗(yàn),有效保障設(shè)備質(zhì)量。遵循設(shè)計(jì)規(guī)范要求和技術(shù)標(biāo)準(zhǔn)安裝設(shè)備,把握每個(gè)技術(shù)要點(diǎn),避免設(shè)備安裝時(shí)出現(xiàn)故障,促進(jìn)設(shè)備安裝質(zhì)量提高。

    重視對(duì)地腳螺栓安裝質(zhì)量控制,由于其安裝工藝復(fù)雜,難度較大,質(zhì)量控制比較困難,并且容易出現(xiàn)傾斜現(xiàn)象,可能導(dǎo)致較大的誤差,如果質(zhì)量控制不到位,容易使得設(shè)備出現(xiàn)整體故障,影響其正常運(yùn)行和工作。

    另外,設(shè)備摩擦容易使軸承產(chǎn)生大量熱量,導(dǎo)致該問題出現(xiàn)的原因是潤(rùn)滑油太少,潤(rùn)滑油潔凈度不夠,軸承間的縫隙調(diào)整不當(dāng)?shù)?。為預(yù)防這些問題出現(xiàn),首先就要合理調(diào)整軸承間的縫隙,做好潤(rùn)滑工作,確保潤(rùn)滑油質(zhì)量,避免設(shè)備出現(xiàn)過熱現(xiàn)象,確保建筑設(shè)備安裝工程質(zhì)量。

    1.3試運(yùn)轉(zhuǎn)技術(shù)。建筑設(shè)備安裝完成之后,要進(jìn)行試運(yùn)轉(zhuǎn),在空載、滿載、正常狀態(tài)下運(yùn)轉(zhuǎn),做好相關(guān)數(shù)據(jù)記錄工作,掌握設(shè)備運(yùn)行情況。試運(yùn)轉(zhuǎn)時(shí)應(yīng)該做好設(shè)備各項(xiàng)性能和數(shù)據(jù)指標(biāo)的記錄工作,對(duì)設(shè)備性能進(jìn)行全面分析,對(duì)存在的缺陷及時(shí)改進(jìn)和完善。這樣一來,就能實(shí)現(xiàn)對(duì)設(shè)備性能的有效保障,為建筑施工順利進(jìn)行奠定基礎(chǔ)。

    1.4提高施工人員技術(shù)。注重對(duì)技術(shù)水平高,基礎(chǔ)知識(shí)扎實(shí)的技術(shù)人員引進(jìn)工作,重視提高建筑設(shè)備工程施工技術(shù)人員專業(yè)素質(zhì),使他們更好適應(yīng)各項(xiàng)工作需要。加強(qiáng)對(duì)他們的管理和培訓(xùn),提高施工人員素質(zhì),能熟練的操作建筑設(shè)備,促進(jìn)工程建設(shè)效益提高。

    2、建筑設(shè)備工程施工管理

    除了把握施工技術(shù)要點(diǎn),確保建筑設(shè)備工程更好運(yùn)行和發(fā)揮作用之外,還應(yīng)該加強(qiáng)施工管理,提高質(zhì)量和安全管理水平,推動(dòng)建筑設(shè)備工程施工效率提高。

    2.1材料管理。采購(gòu)建筑設(shè)備各項(xiàng)材料之前,對(duì)供應(yīng)商基本情況進(jìn)行調(diào)查,做好對(duì)各項(xiàng)設(shè)備的采購(gòu)工作,確保材料質(zhì)量合格,為更好開展工作奠定基礎(chǔ)。同時(shí)還要對(duì)材料進(jìn)行檢驗(yàn),有效保障材料質(zhì)量合格,為建筑設(shè)備安裝和施工順利進(jìn)行奠定基礎(chǔ),促進(jìn)工程建設(shè)質(zhì)量提高。

    2.2質(zhì)量管理。設(shè)備工程施工之前,要提高工程質(zhì)量控制水平,做好圖紙?jiān)O(shè)計(jì)工作,對(duì)各項(xiàng)設(shè)備安裝進(jìn)行科學(xué)合理安排,制定科學(xué)合理的施工方案,做好技術(shù)交底工作,明確施工任務(wù)和要求,促進(jìn)建筑設(shè)備工程施工順利進(jìn)行。

    重視施工現(xiàn)場(chǎng)巡視工作,做好各項(xiàng)設(shè)備處理工作,及時(shí)發(fā)現(xiàn)存在的問題與不足,采取有效的措施處理和應(yīng)對(duì),保障工程質(zhì)量提高。

    2.3現(xiàn)場(chǎng)管理。施工單位要配備工作人員,做好對(duì)施工現(xiàn)場(chǎng)的巡視,完善現(xiàn)場(chǎng)檢查,加強(qiáng)對(duì)施工機(jī)械和設(shè)備、施工人員的檢查,確保設(shè)備正常作用發(fā)揮。重視設(shè)備日常維護(hù)工作,及時(shí)添加潤(rùn)滑油,促進(jìn)設(shè)備使用性能最佳發(fā)揮。

    對(duì)設(shè)備存在的缺陷也要及時(shí)處理和應(yīng)對(duì),避免施工現(xiàn)場(chǎng)因設(shè)備質(zhì)量不合格而出現(xiàn)質(zhì)量事故,提高建筑設(shè)備施工效率。

    2.4安全管理。完善施工安全管理規(guī)章制度,明確施工人員管理責(zé)任,推動(dòng)安全管理的規(guī)范化和制度化進(jìn)程。完善現(xiàn)場(chǎng)安全巡視工作,及時(shí)排除存在的安全隱患,將安全事故消滅在萌芽狀態(tài),推動(dòng)建筑施工順利進(jìn)行。建立安全事故應(yīng)急處理機(jī)制,及時(shí)處理和應(yīng)對(duì)突發(fā)事件,盡量降低安全事故帶來的損失。

    2.5試驗(yàn)檢測(cè)。及時(shí)對(duì)各項(xiàng)設(shè)備進(jìn)行試驗(yàn)檢測(cè),全面掌握設(shè)備綜合性能,對(duì)存在故障的設(shè)備立即采取措施處理,從而確保設(shè)備質(zhì)量和性能提高,使其更好運(yùn)行和發(fā)揮作用,促進(jìn)建筑設(shè)備工程運(yùn)行效率提高,更好發(fā)揮相應(yīng)的作用。

    3、結(jié)束語(yǔ)

    要想促進(jìn)建筑設(shè)備工程更好運(yùn)行和發(fā)揮作用,首先就得把握施工技術(shù)要點(diǎn),加強(qiáng)施工管理,確保設(shè)備性能良好,促進(jìn)運(yùn)行效率提高。另外還要重視設(shè)備工程的日常維修和保養(yǎng),使其處于良好的性能和工作狀態(tài),推動(dòng)建筑工程施工效率提高,保障工程建設(shè)質(zhì)量和效益。

    四、誰(shuí)能給幾篇暖通空調(diào)類的英文文獻(xiàn),要附帶漢語(yǔ)全文翻譯的

    testing of an air-cycle refrigeration system for road transport

    Abstract

    The environmental attractions of air-cycle refrigeration are considerable. Following a thermodynamic design analysis, an air-cycle demonstrator plant was constructed within the restricted physical envelope of an existing Thermo King SL200 trailer refrigeration unit. This unique plant operated satisfactorily, delivering sustainable cooling for refrigerated trailers using a completely natural and safe working fluid. The full load capacity of the air-cycle unit at −20 °C was 7,8 kW, 8% greater than the equivalent vapour-cycle unit, but the fuel consumption of the air-cycle plant was excessively high. However, at part load operation the disparity in fuel consumption dropped from approximately 200% to around 80%. The components used in the air-cycle demonstrator were not optimised and considerable potential exists for efficiency improvements, possibly to the point where the air-cycle system could rival the efficiency of the standard vapour-cycle system at part-load operation, which represents the biggest proportion of operating time for most units.

    Keywords: Air conditioner; Refrigerated transport; Thermodynamic cycle; Air; Centrifuge compressor; Turbine expander COP,

    Nomenclature

    PR

    Compressor or turbine pressure ratio

    TA

    Heat exchanger side A temperature (K)

    TB

    Heat exchanger side B temperature (K)

    Tinlet

    Inlet temperature (K)

    Toutlet

    Outlet temperature (K)

    ηcomp

    Compressor isentropic efficiency

    ηturb

    Turbine isentropic efficiency

    ηheat exchanger

    Heat exchanger effectiveness

    1. Introduction

    The current legislative pressure on conventional refrigerants is well known. The reason why vapour-cycle refrigeration is preferred over air-cycle refrigeration is simply that in the great majority of cases vapour-cycle is the most energy efficient option. Consequently, as soon as alternative systems, such as non-HFC refrigerants or air-cycle systems are considered, the issue of increased energy consumption arises immediately.

    Concerns over legislation affecting HFC refrigerants and the desire to improve long-term system reliability led to the examination of the feasibility of an air-cycle system for refrigerated transport. With the support of Enterprise Ireland and Thermo King (Ireland), the authors undertook the design and construction of an air-cycle refrigeration demonstrator plant at LYIT and QUB. This was not the first time in recent years that air-cycle systems had been employed in transport. NormalAir Garrett developed and commercialised an air-cycle air conditioning pack that was fitted to high speed trains in Germany in the 90s. As part of an European funded programme, a range of applications for air-cycle refrigeration were investigated and several demonstrator plants were constructed. However, the authors are unaware of any other case where a self-contained air-cycle unit has been developed for the challenging application of trailer refrigeration.

    Thermo King decided that the demonstrator should be a trailer refrigeration unit, since those were the units with the largest refrigeration capacity but presented the greatest challenges with regard to physical packaging. Consequently, the main objective was to demonstrate that an air-cycle system could fit within the existing physical envelop and develop an equivalent level of cooling power to the existing vapour-cycle unit, but using only air as the working fluid. The salient performance specifications for the existing Thermo King SL200 vapour-cycle trailer refrigeration unit are listed .

    It was not the objective of the exercise to complete the design and development of a new refrigeration product that would be ready for manufacture. To limit the level of resources necessary, existing hardware was to be used where possible with the recognition that the efficiencies achieved would not be optimal. In practical terms, this meant using the chassis and panels for an existing SL200 unit along with the standard diesel engine and circulation fans. The turbomachinery used for compression and expansion was adapted from commercial turbochargers.

    2. Thermodynamic modelling and design of the demonstrator plant

    The thermodynamics of the air-cycle (or the reverse ‘Joule cycle’) are adequately presented in most thermodynamic textbooks and will not be repeated here. For anything other than the smallest flow rates, the most efficient machines available for the necessary compression and expansion processes are turbomachines. Considerations for the selection of turbomachinery for air-cycle refrigeration systems have been presented and discussed by Spence et al. [3].

    a typical configuration of an air-cycle system, which is sometimes called the ‘boot-strap’ configuration. For mechanical convenience the compression process is divided into two stages, meaning that the turbine is not constrained to operate at the same speed as the primary compressor. Instead, the work recovered by the turbine during expansion is utilised in the secondary compressor. The two-stage compression also permits intercooling, which enhances the overall efficiency of the compression process. An ‘open system’ where the cold air is ejected directly into the cold space, removing the need for a heat exchanger in the cold space. In the interests of efficiency, the return air from the cold space is used to pre-cool the compressed air entering the turbine by means of a heat exchanger known as the ‘regenerator’ or the ‘recuperato ’. To support the design of the air-cycle demonstrator plant, and the selection of suitable components, a simple thermodynamic model of the air-cycle configuration shown in was developed. The compression and expansion processes were modelled using appropriate values of isentropic efficiency, as defined in Eqs.The heat exchange processes were modelled using values of heat exchanger effectiveness as defined in The model also made allowance for heat exchanger pressure drop. The system COP was determined from the ratio of the cooling power delivered to the power input to the primary compressor, as defined in illustrate air-cycle performance characteristics as determined from the thermodynamic model:illustrates the variation in air-cycle COP and expander outlet temperature over a range of cycle pressure ratios for a plant operating between −20 °C and +30 °C. The cycle pressure ratio is defined as the ratio of the maximum cycle pressure at secondary compressor outlet to the pressure at turbine outlet. For the ideal air-cycle, with no losses, the cycle COP increases with decreasing cycle pressure ratio and tends to infinity as the pressure ratio approaches unity. However, the introduction of real component efficiencies means that there is a definite peak value of COP that occurs at a certain pressure ratio for a particular cycle. However,illustrates, there is a broad range of pressure ratio and duty over which the system can be operated with only moderate variation of COP.

    The class of turbomachinery suitable for the demonstrator plant required speeds of around 50 000 rev/min. To simplify the mechanical arrangement and avoid the need for a high-speed electric motor, the two-stage compression system shown was adopted. The existing Thermo King SL200 chassis incorporated a substantial system of belts and pulleys to power circulation fans, which severely restricted the useful space available for mounting heat exchangers. A simple thermodynamic model was used to assess the influence of heat exchanger performance on the efficiency of the plant so that the best compromise could be developed show the impact of intercooler and aftercooler effectiveness and pressure loss on the COP of the proposed plant.

    The two-stage system in incorporated an intercooler between the two compression stages. By dispensing with the intercooler and its associated duct work a larger aftercooler could be accommodated with improved effectiveness and reduced pressure loss. Analysis suggested that the improved performance from a larger aftercooler could compensate for the loss of the intercooler.

    shows the impact of the recuperator effectiveness on the COP of the plant, which is clearly more significant than that of the other heat exchangers. As well as boosting cycle efficiency, increased recuperator effectiveness also moves the peak COP to a lower overall system pressure ratio. The impact of pressure loss in the recuperator is the same as for the intercooler and aftercooler shown in. The model did not distinguish between pressure losses in different locations; it was only the sum of the pressure losses that was significant. Any pressure loss in connecting duct work and headers was also lumped together with the heat exchanger pressure loss and analysed as a block pressure loss.

    The specific cooling capacity of the air-cycle increases with system pressure ratio. Consequently, if a higher system pressure ratio was used the required cooling duty could be achieved with a smaller flow rate of air. shows the mass flow rate of air required to deliver 7,5 kW of cooling power for varying system pressure ratios.

    Since the demonstrator system was to be based on commercially available turbomachinery, it became important to choose a pressure ratio and flow rate that could be accommodated efficiently by some existing compressor and turbine rotors. and were based on efficiencies of 81 and 85% for compression and expansion, respectively. While such efficiencies are attainable with optimised designs, they would not be realised using compromised turbocharger components. For the design of the demonstrator plant efficiencies of 78 and 80% were assumed to be realistically attainable for compression and expansion.

    Lower turbomachinery efficiencies corresponded to higher cycle pressure ratios and flow rates in order to achieve the target cooling duty. The cycle design point was also compromised to help heat exchanger performance. The pressure losses in duct work and heat exchangers increased in proportion with the square of flow velocity. Selecting a higher cycle pressure ratio corresponded to a lower mass flow rate and also increased density at inlet to the aftercooler heat exchanger. The combined effect was a decrease in the mean velocity in the heat exchanger, a decrease in the expected pressure losses in the heat exchanger and duct work, and an increase in the effectiveness of the heat exchanger. Consequently, a system pressure ratio higher than the value corresponding to peak COP was chosen in order to achieve acceptable heat exchanger performance within the available physical space. The below optimum performance of turbomachinery and heat exchanger components, coupled with excessive bearing losses, meant that the predicted COP of the overall system dropped to around 0,41. The system pressure ratio at the design point was 2,14 and the corresponding mass flow rate of air was 0,278 kg/s.

    By moving the design point beyond the pressure ratio for peak COP, it was anticipated that the demonstrator plant would yield good part-load performance since the COP would not fall as the pressure ratio was reduced. Also, operating at part-load corresponded to lower flow velocities and anticipated improvements in heat exchanger performance. Part-load operation was achieved by reducing the speed of the primary compressor, resulting in a decrease in both pressure and mass flow rate throughout the cycle.

    3. Prime mover and primary compressor

    The existing diesel engine was judged adequate to power the demonstrator plant. The standard engine was a four cylinder, water cooled diesel engine fitted with a centrifugal clutch and all necessary ancillaries and was controlled by a microprocessor controller.From the thermodynamic model, the pressure ratio for the primary compressor was 1,70. The centrifugal compressor required a shaft speed of around 55 000 rev/min. Other alternatives were evaluated for primary compression with the aim of obtaining a suitable device that operated at a lower speed. Other commercially available devices such as Roots blowers and rotary piston blowers were all excluded on the basis of poor efficiency.

    A one-off gearbox was designed and manufactured as part of the project to step-up the engine shaft speed to around 55 000 rev/min. The gearbox was a two stage, three shaft unit which mounted directly on the end of the diesel engine and was driven through the existing centrifugal clutch.

    4. Cold air unit

    The secondary compressor and the expansion turbine were mounted on the same shaft in a free rotating unit. The combination of the secondary compressor and the turbine was designated as the ‘Cold Air Unit’ (CAU). While the CAU was mechanically equivalent to a turbocharger, a standard turbocharger would not satisfy the aerodynamic requirements efficiently since the pressure ratios and inlet densities for both the compressor and the turbine were significantly different from any turbocharger installation. Consequently, both the secondary compressor and the turbine stage were specially chosen and developed to deliver suitable performance.

    Most turbochargers use plain oil fed journal bearings, which are low-cost, reliable and provide effective damping of shaft vibrations. However, plain bearings dissipate a substantial amount of shaft power through viscous losses in the oil films. A plain bearing arrangement for the CAU was expected to absorb 2–3 kW of mechanical power, which represented around 25% of the anticipated turbine power. Also, the clearances in plain bearings require larger blade tip clearances for both the compressor and the turbine with a consequential efficiency penalty. Given the pressurised inlet to the secondary compressor, the limited thrust capacity of the plain bearing arrangement was also a concern. A CAU utilising high-speed ball bearings, or air bearings, was identified as a preferable arrangement to plain bearings. Benefits would include greatly reduced bearing power losses, reduced turbomachinery tip clearance losses and increased thrust load capacity. However, adequate resources were not available to design a special one-off high speed ball bearing system. Consequently, a standard turbocharger plain bearing system was used.

    The secondary compressor stage was a standard turbocharger compressor selected for a pressure ratio of 1,264. Secondary compressor and turbine selection were linked because of the requirement to balance power and match the speed. Since most commercial turbines are sized for high temperature (and consequently low density) air at inlet, a special turbine stage was developed for the application. Cost considerations precluded the manufacture of a custom turbine rotor, so a commercially available rotor was used. The standard turbine rotor blade profile was substantially modified and vaned nozzles for turbine inlet were designed to match the modified rotor, in line with previous turbine investigations at QUB (Spence and Artt,). An exhaust diffuser was also incorporated into the turbine stage in order to improve turbine efficiency and to moderate the exhaust noise levels through reduced air velocity. The exhaust diffuser exited into a specially designed exhaust silencer.The performance of the turbine stage was measured before the unit was incorporated into the complete demonstrator plant. The peak efficiency of the turbine was established at 81%.

    5. Heat exchangers

    Due to packaging constraints, the heat exchangers had to be specially designed with careful consideration being given to heat exchanger position and header geometry in an attempt to achieve the best performance from the heat exchangers. Tube and fin aluminium heat exchangers, similar to those used in automotive intercooler applications, were chosen primarily because they could be produced on a ‘one-off’ basis at a reasonable cost. There were other heat exchanger technologies available that would have yielded better performance from the available volume, but high one-off production costs precluded their use in the demonstrator plant.

    Several different tube and fin heat exchangers were tested and used to validate a computational model. Once validated, the model was used to assess a wide range of possible heat exchanger configurations that could fit within the Thermo King SL200 chassis. Fitting the proposed heat exchangers within the existing chassis and around the mechanical drive system for the circulation fans, but while still achieving the necessary heat exchanger performance was very challenging. It was clear that potential heat exchanger performance was being sacrificed through the choice of tube and fin construction and by the constraints of the layout of the existing SL200 chassis. The final selection comprised two separate aftercooler units, while the single recuperator was a large, triple pass unit. Based on laboratory tests and the heat exchanger model, the anticipated effectiveness of both the recuperator and aftercooler units was 80%.

    6. Instrumentation

    A range of conventional pressure and temperature instrumentation was installed on the air-cycle demonstrator plant. Air temperature and pressure was logged at inlet and outlet from each heat exchanger, compressor and the turbine. The speed of the primary compressor was determined from the speed measurement on the diesel engine control unit, while the cold air unit was equipped with a magnetic speed counter. No air flow measurement was included on the demonstrator plant. Instead, the air flow rate was deduced from the previously obtained turbine performance map using the measurements of turbine pressure ratio and rotational speed.

    7. System testing

    During some preliminary tests a heat load was applied and the functionality of the demonstrator plant was established. Having assessed that it was capable of delivering approximately the required performance, the plant was transported to a Thermo King calorimeter test facility specifically for measuring the performance of transport refrigeration units. The calorimeter was ideally suited for accurately measuring the refrigeration capacity of the air-cycle demonstrator plant. The calorimeter was operated according to standard ARI 1100-2001; the absolute accuracy was better than 200W and all auxiliary instrumentation was calibrated against appropriate standards.

    The performance capacity of transport refrigeration units is generally rated at two operating conditions; 0 and −20 °C, and both at an ambient temperature of +30 °C. Along with the specified operating conditions of 0 and −20 °C, a further part-load condition at −20 °C was assessed. Considering that the air-cycle plant was only intended to demonstrate a concept and that there were concerns about the reliability of the gearbox and the cold air unit thrust bearing, it was decided to operate the plant only as long as was necessary to obtain stabilised measurements at each operating point. The demonstrator plant operated satisfactorily, allowing sufficient measurements to be obtained at each of the three operating conditions. The recorded performance is summarised .

    In total, the unit operated for approximately 3 h during the course of the various tests. While the demonstrator plant operated adequately to allow measurements, some smoke from the oil system breather suggested that the thrust bearing of the CAU was heavily overloaded and would fail, as had been anticipated at the design stage. Testing was concluded in case the bearing failed completely causing the destruction of the entire CAU. There was no evidence of any gearbox deterioration during testing.

    8. Discussion of measured performance

    From the calorimeter performance measurements, the primary objective of the project had been achieved. A unique air-cycle refrigeration system had been developed within the same physical envelope as the existing Thermo King SL200 refrigeration unit, w

    以上就是關(guān)于暖通空調(diào)論文3000字相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會(huì)為您講解更多精彩的知識(shí)和內(nèi)容。


    推薦閱讀:

    比較全面的暖通教程書籍(比較全面的暖通教程書籍電子版)

    暖通與空調(diào)工程書籍

    建筑初步設(shè)計(jì)需要暖通設(shè)計(jì)嗎(建筑初步設(shè)計(jì)需要暖通設(shè)計(jì)嗎知乎)

    中國(guó)ins粉絲排行榜(中國(guó)ins粉絲排行榜)

    山西高校餐飲品牌設(shè)計(jì)招標(biāo)