HOME 首頁(yè)
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運(yùn)營(yíng)
CASE 服務(wù)案例
NEWS 熱點(diǎn)資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    人工智能包括哪些系統(tǒng)(人工智能包括哪些系統(tǒng)類型)

    發(fā)布時(shí)間:2023-03-19 04:35:42     稿源: 創(chuàng)意嶺    閱讀: 129        問大家

    大家好!今天讓創(chuàng)意嶺的小編來(lái)大家介紹下關(guān)于人工智能包括哪些系統(tǒng)的問題,以下是小編對(duì)此問題的歸納整理,讓我們一起來(lái)看看吧。

    開始之前先推薦一個(gè)非常厲害的Ai人工智能工具,一鍵生成原創(chuàng)文章、方案、文案、工作計(jì)劃、工作報(bào)告、論文、代碼、作文、做題和對(duì)話答疑等等

    只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁(yè)版、PC客戶端

    官網(wǎng):https://ai.de1919.com

    本文目錄:

    人工智能包括哪些系統(tǒng)(人工智能包括哪些系統(tǒng)類型)

    一、1, 什么是人工智能

    人工智能(計(jì)算機(jī)科學(xué)的一個(gè)分支)

    人工智能(Artificial Intelligence),英文縮寫為AI。它是研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。 人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它企圖了解智能的實(shí)質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機(jī)器,該領(lǐng)域的研究包括機(jī)器人、語(yǔ)言識(shí)別、圖像識(shí)別、自然語(yǔ)言處理和專家系統(tǒng)等。人工智能是研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。人工智能從誕生以來(lái),理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴(kuò)大,但沒有一個(gè)統(tǒng)一的定義。

    人工智能是對(duì)人的意識(shí)、思維的信息過程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。但是這種會(huì)自我思考的高級(jí)人工智能還需要科學(xué)理論和工程上的突破。

    人工智能是一門極富挑戰(zhàn)性的科學(xué),從事這項(xiàng)工作的人必須懂得計(jì)算機(jī)知識(shí),心理學(xué)和哲學(xué)。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí),計(jì)算機(jī)視覺等等,總的說(shuō)來(lái),人工智能研究的一個(gè)主要目標(biāo)是使機(jī)器能夠勝任一些通常需要人類智能才能完成的復(fù)雜工作。但不同的時(shí)代、不同的人對(duì)這種“復(fù)雜工作”的理解是不同的。

    工智能的定義可以分為兩部分,即“人工”和“智能”?!叭斯ぁ北容^好理解,爭(zhēng)議性也不大。有時(shí)我們會(huì)要考慮什么是人力所能及制造的,或者人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來(lái)說(shuō),“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。

    關(guān)于什么是“智能”,就問題多多了。這涉及到其它諸如意識(shí)(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無(wú)意識(shí)的思維(UNCONSCIOUS_MIND)等等問題。人唯一了解的智能是人本身的智能,這是普遍認(rèn)同的觀點(diǎn)。但是我們對(duì)我們自身智能的理解都非常有限,對(duì)構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及對(duì)人的智能本身的研究。其它關(guān)于動(dòng)物或其它人造系統(tǒng)的智能也普遍被認(rèn)為是人工智能相關(guān)的研究課題。

    人工智能在計(jì)算機(jī)領(lǐng)域內(nèi),得到了愈加廣泛的重視。并在機(jī)器人,經(jīng)濟(jì)政治決策,控制系統(tǒng),仿真系統(tǒng)中得到應(yīng)用。

    人工智能機(jī)器人

    著名的美國(guó)斯坦福大學(xué)人工智能研究中心尼爾遜教授對(duì)人工智能下了這樣一個(gè)定義:“人工智能是關(guān)于知識(shí)的學(xué)科――怎樣表示知識(shí)以及怎樣獲得知識(shí)并使用知識(shí)的科學(xué)。”而另一個(gè)美國(guó)麻省理工學(xué)院的溫斯頓教授認(rèn)為:“人工智能就是研究如何使計(jì)算機(jī)去做過去只有人才能做的智能工作。”這些說(shuō)法反映了人工智能學(xué)科的基本思想和基本內(nèi)容。即人工智能是研究人類智能活動(dòng)的規(guī)律,構(gòu)造具有一定智能的人工系統(tǒng),研究如何讓計(jì)算機(jī)去完成以往需要人的智力才能勝任的工作,也就是研究如何應(yīng)用計(jì)算機(jī)的軟硬件來(lái)模擬人類某些智能行為的基本理論、方法和技術(shù)。

    人工智能是計(jì)算機(jī)學(xué)科的一個(gè)分支,二十世紀(jì)七十年代以來(lái)被稱為世界三大尖端技術(shù)之一(空間技術(shù)、能源技術(shù)、人工智能)。也被認(rèn)為是二十一世紀(jì)(基因工程、納米科學(xué)、人工智能)三大尖端技術(shù)之一。這是因?yàn)榻陙?lái)它獲得了迅速的發(fā)展,在很多學(xué)科領(lǐng)域都獲得了廣泛應(yīng)用,并取得了豐碩的成果,人工智能已逐步成為一個(gè)獨(dú)立的分支,無(wú)論在理論和實(shí)踐上都已自成一個(gè)系統(tǒng)。

    人工智能是研究使計(jì)算機(jī)來(lái)模擬人的某些思維過程和智能行為(如學(xué)習(xí)、推理、思考、規(guī)劃等)的學(xué)科,主要包括計(jì)算機(jī)實(shí)現(xiàn)智能的原理、制造類似于人腦智能的計(jì)算機(jī),使計(jì)算機(jī)能實(shí)現(xiàn)更高層次的應(yīng)用。人工智能將涉及到計(jì)算機(jī)科學(xué)、心理學(xué)、哲學(xué)和語(yǔ)言學(xué)等學(xué)科??梢哉f(shuō)幾乎是自然科學(xué)和社會(huì)科學(xué)的所有學(xué)科,其范圍已遠(yuǎn)遠(yuǎn)超出了計(jì)算機(jī)科學(xué)的范疇,人工智能與思維科學(xué)的關(guān)系是實(shí)踐和理論的關(guān)系,人工智能是處于思維科學(xué)的技術(shù)應(yīng)用層次,是它的一個(gè)應(yīng)用分支。從思維觀點(diǎn)看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進(jìn)人工智能的突破性的發(fā)展,數(shù)學(xué)常被認(rèn)為是多種學(xué)科的基礎(chǔ)科學(xué),數(shù)學(xué)也進(jìn)入語(yǔ)言、思維領(lǐng)域,人工智能學(xué)科也必須借用數(shù)學(xué)工具,數(shù)學(xué)不僅在標(biāo)準(zhǔn)邏輯、模糊數(shù)學(xué)等范圍發(fā)揮作用,數(shù)學(xué)進(jìn)入人工智能學(xué)科,它們將互相促進(jìn)而更快地發(fā)展。

    2研究?jī)r(jià)值編輯

    具有人工智能的機(jī)器人

    例如繁重的科學(xué)和工程計(jì)算本來(lái)是要人腦來(lái)承擔(dān)的,如今計(jì)算機(jī)不但能完成這種計(jì)算,而且能夠比人腦做得更快、更準(zhǔn)確,因此當(dāng)代人已不再把這種計(jì)算看作是“需要人類智能才能完成的復(fù)雜任務(wù)”,可見復(fù)雜工作的定義是隨著時(shí)代的發(fā)展和技術(shù)的進(jìn)步而變化的,人工智能這門科學(xué)的具體目標(biāo)也自然隨著時(shí)代的變化而發(fā)展。它一方面不斷獲得新的進(jìn)展,另一方面又轉(zhuǎn)向更有意義、更加困難的目標(biāo)。

    通常,“機(jī)器學(xué)習(xí)”的數(shù)學(xué)基礎(chǔ)是“統(tǒng)計(jì)學(xué)”、“信息論”和“控制論”。還包括其他非數(shù)學(xué)學(xué)科。這類“機(jī)器學(xué)習(xí)”對(duì)“經(jīng)驗(yàn)”的依賴性很強(qiáng)。計(jì)算機(jī)需要不斷從解決一類問題的經(jīng)驗(yàn)中獲取知識(shí),學(xué)習(xí)策略,在遇到類似的問題時(shí),運(yùn)用經(jīng)驗(yàn)知識(shí)解決問題并積累新的經(jīng)驗(yàn),就像普通人一樣。我們可以將這樣的學(xué)習(xí)方式稱之為“連續(xù)型學(xué)習(xí)”。但人類除了會(huì)從經(jīng)驗(yàn)中學(xué)習(xí)之外,還會(huì)創(chuàng)造,即“跳躍型學(xué)習(xí)”。這在某些情形下被稱為“靈感”或“頓悟”。一直以來(lái),計(jì)算機(jī)最難學(xué)會(huì)的就是“頓悟”?;蛘咴賴?yán)格一些來(lái)說(shuō),計(jì)算機(jī)在學(xué)習(xí)和“實(shí)踐”方面難以學(xué)會(huì)“不依賴于量變的質(zhì)變”,很難從一種“質(zhì)”直接到另一種“質(zhì)”,或者從一個(gè)“概念”直接到另一個(gè)“概念”。正因?yàn)槿绱耍@里的“實(shí)踐”并非同人類一樣的實(shí)踐。人類的實(shí)踐過程同時(shí)包括經(jīng)驗(yàn)和創(chuàng)造。[1]

    這是智能化研究者夢(mèng)寐以求的東西。

    2013年,帝金數(shù)據(jù)普數(shù)中心數(shù)據(jù)研究員S.C WANG開發(fā)了一種新的數(shù)據(jù)分析方法,該方法導(dǎo)出了研究函數(shù)性質(zhì)的新方法。作者發(fā)現(xiàn),新數(shù)據(jù)分析方法給計(jì)算機(jī)學(xué)會(huì)“創(chuàng)造”提供了一種方法。本質(zhì)上,這種方法為人的“創(chuàng)造力”的模式化提供了一種相當(dāng)有效的途徑。這種途徑是數(shù)學(xué)賦予的,是普通人無(wú)法擁有但計(jì)算機(jī)可以擁有的“能力”。從此,計(jì)算機(jī)不僅精于算,還會(huì)因精于算而精于創(chuàng)造。計(jì)算機(jī)學(xué)家們應(yīng)該斬釘截鐵地剝奪“精于創(chuàng)造”的計(jì)算機(jī)過于全面的操作能力,否則計(jì)算機(jī)真的有一天會(huì)“反捕”人類。[1]

    當(dāng)回頭審視新方法的推演過程和數(shù)學(xué)的時(shí)候,作者拓展了對(duì)思維和數(shù)學(xué)的認(rèn)識(shí)。數(shù)學(xué)簡(jiǎn)潔,清晰,可靠性、模式化強(qiáng)。在數(shù)學(xué)的發(fā)展史上,處處閃耀著數(shù)學(xué)大師們創(chuàng)造力的光輝。這些創(chuàng)造力以各種數(shù)學(xué)定理或結(jié)論的方式呈現(xiàn)出來(lái),而數(shù)學(xué)定理最大的特點(diǎn)就是:建立在一些基本的概念和公理上,以模式化的語(yǔ)言方式表達(dá)出來(lái)的包含豐富信息的邏輯結(jié)構(gòu)。應(yīng)該說(shuō),數(shù)學(xué)是最單純、最直白地反映著(至少一類)創(chuàng)造力模式的學(xué)科。[1]

    3科學(xué)介紹編輯

    實(shí)際應(yīng)用

    機(jī)器視覺:機(jī)器視覺,指紋識(shí)別,人臉識(shí)別,視網(wǎng)膜識(shí)別,虹膜識(shí)別,掌紋識(shí)別,專家系統(tǒng),自動(dòng)規(guī)劃,智能搜索,定理證明,博弈,自動(dòng)程序設(shè)計(jì),智能控制,機(jī)器人學(xué),語(yǔ)言和圖像理解,遺傳編程等。

    學(xué)科范疇

    人工智能是一門邊沿學(xué)科,屬于自然科學(xué)和社會(huì)科學(xué)的交叉。

    涉及學(xué)科

    哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計(jì)算機(jī)科學(xué),信息論,控制論,不定性論

    研究范疇

    自然語(yǔ)言處理,知識(shí)表現(xiàn),智能搜索,推理,規(guī)劃,機(jī)器學(xué)習(xí),知識(shí)獲取,組合調(diào)度問題,感知問題,模式識(shí)別,邏輯程序設(shè)計(jì)軟計(jì)算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復(fù)雜系統(tǒng),遺傳算法

    意識(shí)和人工智能

    人工智能就其本質(zhì)而言,是對(duì)人的思維的信息過程的模擬。

    對(duì)于人的思維模擬可以從兩條道路進(jìn)行,一是結(jié)構(gòu)模擬,仿照人腦的結(jié)構(gòu)機(jī)制,制造出“類人腦”的機(jī)器;二是功能模擬,暫時(shí)撇開人腦的內(nèi)部結(jié)構(gòu),而從其功能過程進(jìn)行模擬?,F(xiàn)代電子計(jì)算機(jī)的產(chǎn)生便是對(duì)人腦思維功能的模擬,是對(duì)人腦思維的信息過程的模擬。

    弱人工智能如今不斷地迅猛發(fā)展,尤其是2008年經(jīng)濟(jì)危機(jī)后,美日歐希望借機(jī)器人等實(shí)現(xiàn)再工業(yè)化,工業(yè)機(jī)器人以比以往任何時(shí)候更快的速度發(fā)展,更加帶動(dòng)了弱人工智能和相關(guān)領(lǐng)域產(chǎn)業(yè)的不斷突破,很多必須用人來(lái)做的工作如今已經(jīng)能用機(jī)器人實(shí)現(xiàn)。

    而強(qiáng)人工智能則暫時(shí)處于瓶頸,還需要科學(xué)家們和人類的努力。

    4發(fā)展階段編輯

    1956年夏季,以麥卡賽、明斯基、羅切斯特和申農(nóng)等為首的一批有遠(yuǎn)見卓識(shí)的年輕科學(xué)家在一起聚會(huì),共同研究和探討用機(jī)器模擬智能的一系列有關(guān)問題,并首次提出了“人工智能”這一術(shù)語(yǔ),它標(biāo)志著“人工智能”這門新興學(xué)科的正式誕生。IBM公司“深藍(lán)”電腦擊敗了人類的世界國(guó)際象棋冠軍更是人工智能技術(shù)的一個(gè)完美表現(xiàn)。

    從1956年正式提出人工智能學(xué)科算起,50多年來(lái),取得長(zhǎng)足的發(fā)展,成為一門廣泛的交叉和前沿科學(xué)??偟恼f(shuō)來(lái),人工智能的目的就是讓計(jì)算機(jī)這臺(tái)機(jī)器能夠像人一樣思考。如果希望做出一臺(tái)能夠思考的機(jī)器,那就必須知道什么是思考,更進(jìn)一步講就是什么是智慧。什么樣的機(jī)器才是智慧的呢?科學(xué)家已經(jīng)作出了汽車,火車,飛機(jī),收音機(jī)等等,它們模仿我們身體器官的功能,但是能不能模仿人類大腦的功能呢?到目前為止,我們也僅僅知道這個(gè)裝在我們天靈蓋里面的東西是由數(shù)十億個(gè)神經(jīng)細(xì)胞組成的器官,我們對(duì)這個(gè)東西知之甚少,模仿它或許是天下最困難的事情了。

    當(dāng)計(jì)算機(jī)出現(xiàn)后,人類開始真正有了一個(gè)可以模擬人類思維的工具,在以后的歲月中,無(wú)數(shù)科學(xué)家為這個(gè)目標(biāo)努力著。如今人工智能已經(jīng)不再是幾個(gè)科學(xué)家的專利了,全世界幾乎所有大學(xué)的計(jì)算機(jī)系都有人在研究這門學(xué)科,學(xué)習(xí)計(jì)算機(jī)的大學(xué)生也必須學(xué)習(xí)這樣一門課程,在大家不懈的努力下,如今計(jì)算機(jī)似乎已經(jīng)變得十分聰明了。例如,1997年5月,IBM公司研制的深藍(lán)(DEEP BLUE)計(jì)算機(jī)戰(zhàn)勝了國(guó)際象棋大師卡斯帕洛夫(KASPAROV)。大家或許不會(huì)注意到,在一些地方計(jì)算機(jī)幫助人進(jìn)行其它原來(lái)只屬于人類的工作,計(jì)算機(jī)以它的高速和準(zhǔn)確為人類發(fā)揮著它的作用。人工智能始終是計(jì)算機(jī)科學(xué)的前沿學(xué)科,計(jì)算機(jī)編程語(yǔ)言和其它計(jì)算機(jī)軟件都因?yàn)橛辛巳斯ぶ悄艿倪M(jìn)展而得以存在。

    5技術(shù)研究編輯

    用來(lái)研究人工智能的主要物質(zhì)基礎(chǔ)以及能夠?qū)崿F(xiàn)人工智能技術(shù)平臺(tái)的機(jī)器就是計(jì)算機(jī),人工智能的發(fā)展歷史是和計(jì)算機(jī)科學(xué)技術(shù)的發(fā)展史聯(lián)系在一起的。除了計(jì)算機(jī)科學(xué)以外,人工智能還涉及信息論、控制論、自動(dòng)化、仿生學(xué)、生物學(xué)、心理學(xué)、數(shù)理邏輯、語(yǔ)言學(xué)、醫(yī)學(xué)和哲學(xué)等多門學(xué)科。人工智能學(xué)科研究的主要內(nèi)容包括:知識(shí)表示、自動(dòng)推理和搜索方法、機(jī)器學(xué)習(xí)和知識(shí)獲取、知識(shí)處理系統(tǒng)、自然語(yǔ)言理解、計(jì)算機(jī)視覺、智能機(jī)器人、自動(dòng)程序設(shè)計(jì)等方面。

    人工智能技術(shù)研究 ARTIFICIAL INTELLIGENCE AND ROBOTICS RESEARCH 是一本關(guān)注人工智能與機(jī)器人研究領(lǐng)域最新進(jìn)展的國(guó)際中文期刊,由漢斯出版社發(fā)行,本刊支持思想創(chuàng)新、學(xué)術(shù)創(chuàng)新,倡導(dǎo)科學(xué),繁榮學(xué)術(shù),集學(xué)術(shù)性、思想性為一體,旨在為了給世界范圍內(nèi)的科學(xué)家、學(xué)者、科研人員提供一個(gè)傳播、分享和討論人工智能與機(jī)器人研究領(lǐng)域內(nèi)不同方向問題與發(fā)展的交流平臺(tái)。

    研究領(lǐng)域

    人工智能技術(shù)研究

    智能機(jī)器人

    模式識(shí)別與智能系統(tǒng)

    虛擬現(xiàn)實(shí)技術(shù)與應(yīng)用

    系統(tǒng)仿真技術(shù)與應(yīng)用

    工業(yè)過程建模與智能控制

    智能計(jì)算與機(jī)器博弈

    人工智能理論

    語(yǔ)音識(shí)別與合成

    機(jī)器翻譯

    圖像處理與計(jì)算機(jī)視覺

    計(jì)算機(jī)感知

    計(jì)算機(jī)神經(jīng)網(wǎng)絡(luò)

    知識(shí)發(fā)現(xiàn)與機(jī)器學(xué)習(xí)

    建筑智能化技術(shù)與應(yīng)用

    人工智能其他學(xué)科

    研究方法

    如今沒有統(tǒng)一的原理或范式指導(dǎo)人工智能研究。許多問題上研究者都存在爭(zhēng)論。其中幾個(gè)長(zhǎng)久以來(lái)仍沒有結(jié)論的問題是:是否應(yīng)從心理或神經(jīng)方面模擬人工智能?或者像鳥類生物學(xué)對(duì)于航空工程一樣,人類生物學(xué)對(duì)于人工智能研究是沒有關(guān)系的?智能行為能否用簡(jiǎn)單的原則(如邏輯或優(yōu)化)來(lái)描述?還是必須解決大量完全無(wú)關(guān)的問題?

    智能是否可以使用高級(jí)符號(hào)表達(dá),如詞和想法?還是需要“子符號(hào)”的處理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提議人工智能應(yīng)歸類為SYNTHETIC INTELLIGENCE,[29]這個(gè)概念后來(lái)被某些非GOFAI研究者采納。

    大腦模擬

    主條目:控制論和計(jì)算神經(jīng)科學(xué)

    20世紀(jì)40年代到50年代,許多研究者探索神經(jīng)病學(xué),信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡(luò)構(gòu)造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 這些研究者還經(jīng)常在普林斯頓大學(xué)和英國(guó)的RATIO CLUB舉行技術(shù)協(xié)會(huì)會(huì)議.直到1960, 大部分人已經(jīng)放棄這個(gè)方法,盡管在80年代再次提出這些原理。

    符號(hào)處理

    主條目:GOFAI

    當(dāng)20世紀(jì)50年代,數(shù)字計(jì)算機(jī)研制成功,研究者開始探索人類智能是否能簡(jiǎn)化成符號(hào)處理。研究主要集中在卡內(nèi)基梅隆大學(xué), 斯坦福大學(xué)和麻省理工學(xué)院,而各自有獨(dú)立的研究風(fēng)格。JOHN HAUGELAND稱這些方法為GOFAI(出色的老式人工智能)。[33] 60年代,符號(hào)方法在小型證明程序上模擬高級(jí)思考有很大的成就?;诳刂普摶蛏窠?jīng)網(wǎng)絡(luò)的方法則置于次要。[34] 60~70年代的研究者確信符號(hào)方法最終可以成功創(chuàng)造強(qiáng)人工智能的機(jī)器,同時(shí)這也是他們的目標(biāo)。

    認(rèn)知模擬經(jīng)濟(jì)學(xué)家赫伯特·西蒙和艾倫·紐厄爾研究人類問題解決能力和嘗試將其形式化,同時(shí)他們?yōu)槿斯ぶ悄艿幕驹泶蛳禄A(chǔ),如認(rèn)知科學(xué), 運(yùn)籌學(xué)和經(jīng)營(yíng)科學(xué)。他們的研究團(tuán)隊(duì)使用心理學(xué)實(shí)驗(yàn)的結(jié)果開發(fā)模擬人類解決問題方法的程序。這方法一直在卡內(nèi)基梅隆大學(xué)沿襲下來(lái),并在80年代于SOAR發(fā)展到高峰?;谶壿嫴幌癜瑐悺ぜ~厄爾和赫伯特·西蒙,JOHN MCCARTHY認(rèn)為機(jī)器不需要模擬人類的思想,而應(yīng)嘗試找到抽象推理和解決問題的本質(zhì),不管人們是否使用同樣的算法。他在斯坦福大學(xué)的實(shí)驗(yàn)室致力于使用形式化邏輯解決多種問題,包括知識(shí)表示, 智能規(guī)劃和機(jī)器學(xué)習(xí). 致力于邏輯方法的還有愛丁堡大學(xué),而促成歐洲的其他地方開發(fā)編程語(yǔ)言PROLOG和邏輯編程科學(xué).“反邏輯”斯坦福大學(xué)的研究者 (如馬文·閔斯基和西摩爾·派普特)發(fā)現(xiàn)要解決計(jì)算機(jī)視覺和自然語(yǔ)言處理的困難問題,需要專門的方案-他們主張不存在簡(jiǎn)單和通用原理(如邏輯)能夠達(dá)到所有的智能行為。ROGER SCHANK 描述他們的“反邏輯”方法為 "SCRUFFY" .常識(shí)知識(shí)庫(kù) (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因?yàn)樗麄儽仨毴斯ひ淮尉帉懸粋€(gè)復(fù)雜的概念?;谥R(shí)大約在1970年出現(xiàn)大容量?jī)?nèi)存計(jì)算機(jī),研究者分別以三個(gè)方法開始把知識(shí)構(gòu)造成應(yīng)用軟件。這場(chǎng)“知識(shí)革命”促成專家系統(tǒng)的開發(fā)與計(jì)劃,這是第一個(gè)成功的人工智能軟件形式?!爸R(shí)革命”同時(shí)讓人們意識(shí)到許多簡(jiǎn)單的人工智能軟件可能需要大量的知識(shí)。

    子符號(hào)法

    80年代符號(hào)人工智能停滯不前,很多人認(rèn)為符號(hào)系統(tǒng)永遠(yuǎn)不可能模仿人類所有的認(rèn)知過程,特別是感知,機(jī)器人,機(jī)器學(xué)習(xí)和模式識(shí)別。很多研究者開始關(guān)注子符號(hào)方法解決特定的人工智能問題。

    自下而上, 接口AGENT,嵌入環(huán)境(機(jī)器人),行為主義,新式AI機(jī)器人領(lǐng)域相關(guān)的研究者,如RODNEY BROOKS,否定符號(hào)人工智能而專注于機(jī)器人移動(dòng)和求生等基本的工程問題。他們的工作再次關(guān)注早期控制論研究者的觀點(diǎn),同時(shí)提出了在人工智能中使用控制理論。這與認(rèn)知科學(xué)領(lǐng)域中的表征感知論點(diǎn)是一致的:更高的智能需要個(gè)體的表征(如移動(dòng),感知和形象)。計(jì)算智能80年代中DAVID RUMELHART 等再次提出神經(jīng)網(wǎng)絡(luò)和聯(lián)結(jié)主義. 這和其他的子符號(hào)方法,如模糊控制和進(jìn)化計(jì)算,都屬于計(jì)算智能學(xué)科研究范疇。

    統(tǒng)計(jì)學(xué)法

    90年代,人工智能研究發(fā)展出復(fù)雜的數(shù)學(xué)工具來(lái)解決特定的分支問題。這些工具是真正的科學(xué)方法,即這些方法的結(jié)果是可測(cè)量的和可驗(yàn)證的,同時(shí)也是人工智能成功的原因。共用的數(shù)學(xué)語(yǔ)言也允許已有學(xué)科的合作(如數(shù)學(xué),經(jīng)濟(jì)或運(yùn)籌學(xué))。STUART J. RUSSELL和PETER NORVIG指出這些進(jìn)步不亞于“革命”和“NEATS的成功”。有人批評(píng)這些技術(shù)太專注于特定的問題,而沒有考慮長(zhǎng)遠(yuǎn)的強(qiáng)人工智能目標(biāo)。

    集成方法

    智能AGENT范式智能AGENT是一個(gè)會(huì)感知環(huán)境并作出行動(dòng)以達(dá)致目標(biāo)的系統(tǒng)。最簡(jiǎn)單的智能AGENT是那些可以解決特定問題的程序。更復(fù)雜的AGENT包括人類和人類組織(如公司)。這些范式可以讓研究者研究單獨(dú)的問題和找出有用且可驗(yàn)證的方案,而不需考慮單一的方法。一個(gè)解決特定問題的AGENT可以使用任何可行的方法-一些AGENT用符號(hào)方法和邏輯方法,一些則是子符號(hào)神經(jīng)網(wǎng)絡(luò)或其他新的方法。范式同時(shí)也給研究者提供一個(gè)與其他領(lǐng)域溝通的共同語(yǔ)言--如決策論和經(jīng)濟(jì)學(xué)(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被廣泛接受。AGENT體系結(jié)構(gòu)和認(rèn)知體系結(jié)構(gòu)研究者設(shè)計(jì)出一些系統(tǒng)來(lái)處理多ANGENT系統(tǒng)中智能AGENT之間的相互作用。一個(gè)系統(tǒng)中包含符號(hào)和子符號(hào)部分的系統(tǒng)稱為混合智能系統(tǒng) ,而對(duì)這種系統(tǒng)的研究則是人工智能系統(tǒng)集成。分級(jí)控制系統(tǒng)則給反應(yīng)級(jí)別的子符號(hào)AI 和最高級(jí)別的傳統(tǒng)符號(hào)AI提供橋梁,同時(shí)放寬了規(guī)劃和世界建模的時(shí)間。RODNEY BROOKS的SUBSUMPTION ARCHITECTURE就是一個(gè)早期的分級(jí)系統(tǒng)計(jì)劃。

    智能模擬

    機(jī)器視、聽、觸、感覺及思維方式的模擬:指紋識(shí)別,人臉識(shí)別,視網(wǎng)膜識(shí)別,虹膜識(shí)別,掌紋識(shí)別,專家系統(tǒng),智能搜索,定理證明,邏輯推理,博弈,信息感應(yīng)與辨證處理。

    學(xué)科范疇

    人工智能是一門邊沿學(xué)科,屬于自然科學(xué)、社會(huì)科學(xué)、技術(shù)科學(xué)三向交叉學(xué)科。

    涉及學(xué)科

    哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計(jì)算機(jī)科學(xué),信息論,控制論,不定性論,仿生學(xué),社會(huì)結(jié)構(gòu)學(xué)與科學(xué)發(fā)展觀。

    研究范疇

    語(yǔ)言的學(xué)習(xí)與處理,知識(shí)表現(xiàn),智能搜索,推理,規(guī)劃,機(jī)器學(xué)習(xí),知識(shí)獲取,組合調(diào)度問題,感知問題,模式識(shí)別,邏輯程序設(shè)計(jì),軟計(jì)算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復(fù)雜系統(tǒng),遺傳算法人類思維方式,最關(guān)鍵的難題還是機(jī)器的自主創(chuàng)造性思維能力的塑造與提升。

    應(yīng)用領(lǐng)域

    機(jī)器翻譯,智能控制,專家系統(tǒng),機(jī)器人學(xué),語(yǔ)言和圖像理解,遺傳編程機(jī)器人工廠,自動(dòng)程序設(shè)計(jì),航天應(yīng)用,龐大的信息處理,儲(chǔ)存與管理,執(zhí)行化合生命體無(wú)法執(zhí)行的或復(fù)雜或規(guī)模龐大的任務(wù)等等。

    值得一提的是,機(jī)器翻譯是人工智能的重要分支和最先應(yīng)用領(lǐng)域。不過就已有的機(jī)譯成就來(lái)看,機(jī)譯系統(tǒng)的譯文質(zhì)量離終極目標(biāo)仍相差甚遠(yuǎn);而機(jī)譯質(zhì)量是機(jī)譯系統(tǒng)成敗的關(guān)鍵。中國(guó)數(shù)學(xué)家、語(yǔ)言學(xué)家周海中教授曾在論文《機(jī)器翻譯五十年》中指出:要提高機(jī)譯的質(zhì)量,首先要解決的是語(yǔ)言本身問題而不是程序設(shè)計(jì)問題;單靠若干程序來(lái)做機(jī)譯系統(tǒng),肯定是無(wú)法提高機(jī)譯質(zhì)量的;另外在人類尚未明了大腦是如何進(jìn)行語(yǔ)言的模糊識(shí)別和邏輯判斷的情況下,機(jī)譯要想達(dá)到“信、達(dá)、雅”的程度是不可能的。

    安全問題

    人工智能還在研究中,但有學(xué)者認(rèn)為讓計(jì)算機(jī)擁有智商是很危險(xiǎn)的,它可能會(huì)反抗人類。這種隱患也在多部電影中發(fā)生過,其主要的關(guān)鍵是允不允許機(jī)器擁有自主意識(shí)的產(chǎn)生與延續(xù),如果使機(jī)器擁有自主意識(shí),則意味著機(jī)器具有與人同等或類似的創(chuàng)造性,自我保護(hù)意識(shí),情感和自發(fā)行為。

    實(shí)現(xiàn)方法

    人工智能在計(jì)算機(jī)上實(shí)現(xiàn)時(shí)有2種不同的方式。一種是采用傳統(tǒng)的編程技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用方法是否與人或動(dòng)物機(jī)體所用的方法相同。這種方法叫工程學(xué)方法(ENGINEERING APPROACH),它已在一些領(lǐng)域內(nèi)作出了成果,如文字識(shí)別、電腦下棋等。另一種是模擬法(MODELING APPROACH),它不僅要看效果,還要求實(shí)現(xiàn)方法也和人類或生物機(jī)體所用的方法相同或相類似。遺傳算法(GENERIC ALGORITHM,簡(jiǎn)稱GA)和人工神經(jīng)網(wǎng)絡(luò)(ARTIFICIAL NEURAL NETWORK,簡(jiǎn)稱ANN)均屬后一類型。遺傳算法模擬人類或生物的遺傳-進(jìn)化機(jī)制,人工神經(jīng)網(wǎng)絡(luò)則是模擬人類或動(dòng)物大腦中神經(jīng)細(xì)胞的活動(dòng)方式。為了得到相同智能效果,兩種方式通常都可使用。采用前一種方法,需要人工詳細(xì)規(guī)定程序邏輯,如果游戲簡(jiǎn)單,還是方便的。如果游戲復(fù)雜,角色數(shù)量和活動(dòng)空間增加,相應(yīng)的邏輯就會(huì)很復(fù)雜(按指數(shù)式增長(zhǎng)),人工編程就非常繁瑣,容易出錯(cuò)。而一旦出錯(cuò),就必須修改原程序,重新編譯、調(diào)試,最后為用戶提供一個(gè)新的版本或提供一個(gè)新補(bǔ)丁,非常麻煩。采用后一種方法時(shí),編程者要為每一角色設(shè)計(jì)一個(gè)智能系統(tǒng)(一個(gè)模塊)來(lái)進(jìn)行控制,這個(gè)智能系統(tǒng)(模塊)開始什么也不懂,就像初生嬰兒那樣,但它能夠?qū)W習(xí),能漸漸地適應(yīng)環(huán)境,應(yīng)付各種復(fù)雜情況。這種系統(tǒng)開始也常犯錯(cuò)誤,但它能吸取教訓(xùn),下一次運(yùn)行時(shí)就可能改正,至少不會(huì)永遠(yuǎn)錯(cuò)下去,用不到發(fā)布新版本或打補(bǔ)丁。利用這種方法來(lái)實(shí)現(xiàn)人工智能,要求編程者具有生物學(xué)的思考方法,入門難度大一點(diǎn)。但一旦入了門,就可得到廣泛應(yīng)用。由于這種方法編程時(shí)無(wú)須對(duì)角色的活動(dòng)規(guī)律做詳細(xì)規(guī)定,應(yīng)用于復(fù)雜問題,通常會(huì)比前一種方法更省力。

    二、定義人工智能的四個(gè)方面是什么?

    人工智能是對(duì)人的意識(shí)、思維的信息過程的模擬。但不是人的智能,能像人那樣思考、也可能超過人的智能。但是這種會(huì)自我思考的高級(jí)人工智能還需要科學(xué)理論和工程上的突破。從誕生以來(lái),人工智能理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴(kuò)大,可以設(shè)想,未來(lái)人工智能帶來(lái)的科技產(chǎn)品,將會(huì)是人類智慧的“容器”。正因?yàn)槿绱?,人工智能的?yīng)用方向才十分之廣。

    為了讓愛寵寵對(duì)人工智能的定義進(jìn)行討論,以便更深刻地理解人工智能,下面綜述其它幾種關(guān)于人工智能的定義。

    人工智能定義1:人工智能是那些與人的思維、決策、問題求解和學(xué)習(xí)等有關(guān)活動(dòng)的自動(dòng)化(Bellman,1978)。

    人工智能定義2:人工智能是一種使計(jì)算機(jī)能夠思維,使機(jī)器具有智力的激動(dòng)人心的新嘗試(Haugeland,1985)。

    人工智能定義3:人工智能是用計(jì)算模型研究智力行為(Charniak和McDermott,1985)。

    人工智能定義4:人工智能是研究那些使理解、推理和行為成為可能的計(jì)算(Winston,1992)。

    三、人工智能包括哪些科學(xué)?

    人工智能(AI)是一門極富挑戰(zhàn)性的科學(xué),從事這項(xiàng)工作的人必須懂得計(jì)算機(jī)知識(shí),心理學(xué)和哲學(xué)。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí),計(jì)算機(jī)視覺等等,總的說(shuō)來(lái),人工智能的目的就是讓計(jì)算機(jī)這臺(tái)機(jī)器能夠象人一樣思考。

    在1955的時(shí)候,香農(nóng)與人一起開發(fā)了The Logic TheoriST程序,它是一種采用樹形結(jié)構(gòu)的程序,在程序運(yùn)行時(shí),它在樹中搜索,尋找與可能答案最接近的樹的分枝進(jìn)行探索,以得到正確的答案。

    這個(gè)程序在人工智能的歷史上可以說(shuō)是有重要地位的,它在學(xué)術(shù)上和社會(huì)上帶來(lái)的巨大的影響,以至于我們所采用的思想方法有許多還是來(lái)自于這個(gè)50年代的程序。

    1956年,作為人工智能領(lǐng)域另一位著名科學(xué)家的麥卡希召集了一次會(huì)議來(lái)討論人工智能未來(lái)的發(fā)展方向。從那時(shí)起,人工智能的名字才正式確立,這次會(huì)議在人工智能歷史上不是巨大的成功。

    但是這次會(huì)議給人工智能奠基人相互交流的機(jī)會(huì),并為未來(lái)人工智能的發(fā)展起了鋪墊的作用。在此以后,人工智能的重點(diǎn)開始變?yōu)榻?shí)用的能夠自行解決問題的系統(tǒng),并要求系統(tǒng)有自學(xué)習(xí)能力。

    在1957年,香農(nóng)和另一些人又開發(fā)了一個(gè)程序稱為General Problem Solver(GPS),它對(duì)Wiener的反饋理論有一個(gè)擴(kuò)展,并能夠解決一些比較普遍的問題。

    別的科學(xué)家在努力開發(fā)系統(tǒng)時(shí),右圖這位科學(xué)家作出了一項(xiàng)重大的貢獻(xiàn),他創(chuàng)建了表處理語(yǔ)言LISP,直到許多人工智能程序還在使用這種語(yǔ)言,它幾乎成了人工智能的代名詞,到了今天,LISP仍然在發(fā)展。

    人工智能包括哪些系統(tǒng)(人工智能包括哪些系統(tǒng)類型)

    擴(kuò)展資料:

    一、信息技術(shù)簡(jiǎn)介

    信息技術(shù)(Information Technology,縮寫IT),是主要用于管理和處理信息所采用的各種技術(shù)的總稱。它主要是應(yīng)用計(jì)算機(jī)科學(xué)和通信技術(shù)來(lái)設(shè)計(jì)、開發(fā)、安裝和實(shí)施信息系統(tǒng)及應(yīng)用軟件。

    它也常被稱為信息和通信技術(shù)(Information and Communications Technology, ICT)。主要包括傳感技術(shù)、計(jì)算機(jī)與智能技術(shù)、通信技術(shù)和控制技術(shù)。

    二、社會(huì)功能

    信息技術(shù)在全球的廣泛使用,不僅深刻地影響著經(jīng)濟(jì)結(jié)構(gòu)與經(jīng)濟(jì)效率,而且作為先進(jìn)生產(chǎn)力的代表,對(duì)社會(huì)文化和精神文明產(chǎn)生著深刻的影響。

    信息技術(shù)已引起傳統(tǒng)教育方式發(fā)生著深刻變化。計(jì)算機(jī)仿真技術(shù)、多媒體技術(shù)、虛擬現(xiàn)實(shí)技術(shù)和遠(yuǎn)程教育技術(shù)以及信息載體的多樣性,使學(xué)習(xí)者可以克服時(shí)空障礙,更加主動(dòng)地安排自己的學(xué)習(xí)時(shí)間和速度。

    特別是借助于互聯(lián)網(wǎng)的遠(yuǎn)程教育,將開辟出通達(dá)全球的知識(shí)傳播通道,實(shí)現(xiàn)不同地區(qū)的學(xué)習(xí)者、傳授者之間的互相對(duì)話和交流,不僅可望大大提高教育的效率,而且給學(xué)習(xí)者提供一個(gè)寬松的內(nèi)容豐富的學(xué)習(xí)環(huán)境。遠(yuǎn)程教育的發(fā)展將在傳統(tǒng)的教育領(lǐng)域引發(fā)一場(chǎng)革命,并促使人類知識(shí)水平的普遍提高。

    互聯(lián)網(wǎng)已經(jīng)成為科學(xué)研究和技術(shù)開發(fā)不可缺少的工具?;ヂ?lián)網(wǎng)擁有的600多個(gè)大型圖書館、400多個(gè)文獻(xiàn)庫(kù)和100萬(wàn)個(gè)信息源,成為科研人員可以隨時(shí)進(jìn)入并從中獲取最新科技動(dòng)態(tài)的信息寶庫(kù),大大節(jié)約查閱文獻(xiàn)的時(shí)間和費(fèi)用。

    信息網(wǎng)絡(luò)為各種思想文化的傳播,提供了更加便捷的渠道,大量的信息通過網(wǎng)絡(luò)滲入到社會(huì)各個(gè)角落,成為當(dāng)今文化傳播的重要手段。

    參考資料:

    百度百科-信息技術(shù)

    四、人工智能應(yīng)用領(lǐng)域有哪些?

    人工智能的主要應(yīng)用領(lǐng)域有:1.強(qiáng)化學(xué)習(xí)領(lǐng)域;2.生成模型字段;3.內(nèi)存網(wǎng)絡(luò)領(lǐng)域;4.數(shù)據(jù)學(xué)習(xí)領(lǐng)域;5.模擬環(huán)境領(lǐng)域;6.醫(yī)療技術(shù)領(lǐng)域;7.教育領(lǐng)域;8.物流管理領(lǐng)域。

    1.加強(qiáng)學(xué)習(xí)領(lǐng)域

    強(qiáng)化學(xué)習(xí)是一種通過實(shí)驗(yàn)和錯(cuò)誤進(jìn)行學(xué)習(xí)的方法,它受到人類學(xué)習(xí)新技能過程的啟發(fā)。在強(qiáng)化學(xué)習(xí)的典型案例中,我們要求參與者采取行動(dòng),通過觀察當(dāng)前情況來(lái)最大化反饋結(jié)果。每次你執(zhí)行一個(gè)動(dòng)作,實(shí)驗(yàn)者都會(huì)收到環(huán)境的反饋,所以它可以判斷這個(gè)動(dòng)作的效果是積極的還是消極的。

    2.生成模型字段

    通過大量樣本的收集,人工智能生成的模型具有很強(qiáng)的相似性。也就是說(shuō),如果訓(xùn)練數(shù)據(jù)是人臉的圖像,那么訓(xùn)練后得到的模型也是類似人臉的合成圖像。

    人工智能頂級(jí)專家Ian Goodfellow為我們提出了兩個(gè)新思路:一個(gè)是生成器,負(fù)責(zé)將輸入的數(shù)據(jù)合成新的內(nèi)容;另一個(gè)是鑒別器,負(fù)責(zé)判斷生成器生成的內(nèi)容是真是假。這樣,生成器必須反復(fù)學(xué)習(xí)合成的內(nèi)容,直到鑒別器無(wú)法辨別生成器內(nèi)容的真實(shí)性。

    3.存儲(chǔ)網(wǎng)絡(luò)字段

    人工智能系統(tǒng)要像人類一樣適應(yīng)各種環(huán)境,就必須不斷掌握新的技能并學(xué)會(huì)應(yīng)用。傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)很難滿足這些要求。比如一個(gè)神經(jīng)網(wǎng)絡(luò)訓(xùn)練完A任務(wù)后,如果訓(xùn)練它去解決B任務(wù),那么這個(gè)網(wǎng)絡(luò)模型就不再適合A了。

    目前有一些網(wǎng)絡(luò)結(jié)構(gòu)可以使模型具有不同程度的記憶能力。長(zhǎng)短期記憶網(wǎng)絡(luò)可以處理和預(yù)測(cè)時(shí)間序列;漸進(jìn)神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)獨(dú)立模型之間的水平關(guān)系,提取共同特征,可以完成新的任務(wù)。

    4.數(shù)據(jù)學(xué)習(xí)領(lǐng)域

    一直以來(lái),深度學(xué)習(xí)模式都是需要大量的訓(xùn)練數(shù)據(jù)才能達(dá)到最好的效果。沒有大規(guī)模的訓(xùn)練數(shù)據(jù),深度學(xué)習(xí)模型不會(huì)取得最好的效果。例如,當(dāng)我們使用人工智能系統(tǒng)解決缺乏數(shù)據(jù)的任務(wù)時(shí),會(huì)出現(xiàn)各種問題。有一種方法叫遷移學(xué)習(xí),就是把訓(xùn)練好的模型轉(zhuǎn)移到一個(gè)新的任務(wù)上,這樣問題就很容易解決了。

    5.仿真環(huán)境領(lǐng)域

    如果人工智能系統(tǒng)要應(yīng)用于現(xiàn)實(shí)生活,那么人工智能必須具有適用性的特點(diǎn)。因此,開發(fā)模擬真實(shí)物理世界和行為的數(shù)字環(huán)境,將為我們提供檢驗(yàn)人工智能的機(jī)會(huì)。在這些仿真環(huán)境中進(jìn)行訓(xùn)練,可以幫助我們很好地理解人工智能系統(tǒng)的學(xué)習(xí)原理以及如何改進(jìn)系統(tǒng),也為我們提供了一個(gè)可以應(yīng)用到真實(shí)環(huán)境中的模型。

    6.醫(yī)療技術(shù)領(lǐng)域

    目前垂直領(lǐng)域的圖像算法和自然語(yǔ)言處理技術(shù)基本能夠滿足醫(yī)療行業(yè)的需求,市場(chǎng)上已經(jīng)出現(xiàn)了很多技術(shù)服務(wù)商,比如提供智能醫(yī)學(xué)影像技術(shù)的尚德云星、開發(fā)人工智能細(xì)胞識(shí)別醫(yī)療診斷系統(tǒng)的智維信分公司、提供智能輔助診斷服務(wù)平臺(tái)的若水醫(yī)療、統(tǒng)計(jì)處理醫(yī)療數(shù)據(jù)的一通天下等。雖然智能醫(yī)療在輔助診療、疾病預(yù)測(cè)、醫(yī)學(xué)影像輔助診斷、藥物開發(fā)等方面發(fā)揮著重要作用。由于醫(yī)院之間缺乏醫(yī)學(xué)影像數(shù)據(jù)和電子病歷的流通,企業(yè)與醫(yī)院之間的合作不透明,這就使得技術(shù)發(fā)展與數(shù)據(jù)供給之間產(chǎn)生矛盾。

    7.教育領(lǐng)域

    科大訊飛、學(xué)校教育等企業(yè)已經(jīng)開始探索人工智能在教育領(lǐng)域的應(yīng)用。通過圖像識(shí)別,可以進(jìn)行試卷批改、識(shí)題、機(jī)器答題等。通過語(yǔ)音識(shí)別可以糾正和改善發(fā)音;人機(jī)交互可以在線回答問題。AI+教育,可以在一定程度上改善教育行業(yè)師資分布以及成本問題,從工具層面為師生提供更高效的學(xué)習(xí)方式,但無(wú)法對(duì)教育內(nèi)容產(chǎn)生更實(shí)質(zhì)性的影響。

    8.物流管理領(lǐng)域

    物流行業(yè)利用智能搜索、推理規(guī)劃、計(jì)算機(jī)視覺、智能機(jī)器人等技術(shù),在配送、裝卸、運(yùn)輸、倉(cāng)儲(chǔ)等過程中進(jìn)行了自動(dòng)化改造,基本可以實(shí)現(xiàn)無(wú)人化作業(yè)。比如利用大數(shù)據(jù)對(duì)商品進(jìn)行智能配送規(guī)劃,優(yōu)化物流供給、需求匹配、物流資源的配置等。

    以上就是關(guān)于人工智能包括哪些系統(tǒng)相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會(huì)為您講解更多精彩的知識(shí)和內(nèi)容。


    推薦閱讀:

    人工投票團(tuán)隊(duì)24小時(shí)在線(刷票微信投票什么價(jià)位)

    人工智能ai全稱怎么讀(人工智能ai什么意思)

    國(guó)家扶持的人工智能四大平臺(tái)(國(guó)家扶持的人工智能四大平臺(tái)是)

    淘寶搜索店鋪排名規(guī)則(淘寶搜索店鋪排名規(guī)則怎么設(shè)置)

    家庭機(jī)器人可以幫我們干什么(家庭機(jī)器人可以幫我們干什么英文)